Skip to main content
Log in

Three transition metal complexes with uncoordinated carboxyl groups: synthesis, structures, and luminescence properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A new ligand 1-carboxymethyl-5-methyl-1H-pyrazole-4-carboxylic acid (H2L1) and its isomer 1-carboxymethyl-3-methyl-1H-pyrazole-4-carboxylic acid (H2L2) have been synthesized and characterized by IR and 1H NMR. Three complexes of these ligands, [M(HL1)2(H2O)2] (1: M = Zn; 2: M = Cu) and [Cd(HL2)2(H2O)2] (3) were synthesized by the reactions of H2L1 or H2L2 with the corresponding M(NO3)2·6H2O. The complexes were characterized by physico-chemical and spectroscopic methods, single-crystal X-ray diffraction, and thermogravimetric analysis. Complexes 1 and 2 are isostructural, while complex 3 crystallizes in the triclinic system. The M(II) atom in each of the complexes has a distorted octahedral geometry involving two oxygen and two nitrogen atoms from two anionic (HL1) or (HL2) ligands and two oxygen atoms from water ligands. Adjacent monomeric components are connected by hydrogen bonds to form a 3D supramolecular network. The free ligands and complexes 1 and 3 show dual-emissive luminescence in the solid state at room temperature. The luminescence intensity of solid complex 1 is weakened in the presence of NH3.

Graphical Abstract

Two new isomers, H2L1 and H2L2, and three complexes, [Zn(HL1)2(H2O)2], [Cu(HL1)2(H2O)2], and [Cd(HL2)2(H2O)2] have been synthesized, which display dual-emissive luminescence in the solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang B, Côt AP, Furukawa H, O′Keeffe M, Yaghi OM (2008) Nature 453:207–211

    Article  CAS  Google Scholar 

  2. Park HJ, Suh MP (2010) Chem Commun 46:610–612

    Article  CAS  Google Scholar 

  3. Liu D, Lang JP, Abrahams BF (2011) J Am Chem Soc 133:11042–11045

    Article  CAS  Google Scholar 

  4. Li JR, Sculley J, Zhou HC (2012) Chem Rev 112:869–932

    Article  CAS  Google Scholar 

  5. Cao JW, Gao YF, Wang YQ, Du CF, Liu ZL (2013) Chem Commun 49:6897–6899

    Article  CAS  Google Scholar 

  6. Cui YJ, Yue YF, Qian GD, Chen BL (2012) Chem Rev 112:1126–1162

    Article  CAS  Google Scholar 

  7. Fu RB, Hu SM, Wu XT (2012) Cryst Eng Comm 14:3478–3483

    Article  CAS  Google Scholar 

  8. Ma LQ, Abney C, Lin WB (2009) Chem Soc Rev 38:1248–1256

    Article  CAS  Google Scholar 

  9. Uraguchi D, Ueki Y, Ooi T (2009) Science 326:120–123

    Article  CAS  Google Scholar 

  10. Liu Q, Yu LL, Wang Y, Ji YZ, Horvat J, Cheng ML, Jia XY, Wang GX (2013) Inorg Chem 52:2817–2822

    Article  CAS  Google Scholar 

  11. Zhang GQ, Palmer GM, Dewhirst MW, Fraser CL (2009) Nat Mater 8:747–751

    Article  CAS  Google Scholar 

  12. Lo KKW, Zhang KY, Leung SK, Tang MC (2008) Angew Chem Int Ed 47:2213–2216

    Article  CAS  Google Scholar 

  13. Li LN, Zhang SQ, Han L, Sun ZH, Luo JH, Hong MC (2013) Cryst Growth Des 13:106–110

    Article  CAS  Google Scholar 

  14. Cheng ML, Zhu EJ, Liu Q, Chen SC, Chen Q, He MY (2011) Inorg Chem Commun 14:300–303

    Article  CAS  Google Scholar 

  15. Hong J, Cheng ML, Liu Q, Han W, Zhang YP, Ji YZ, Jia XY, Li ZF (2013) Trans Met Chem 38:385–392

    Article  CAS  Google Scholar 

  16. Chen LT, Tao F, Wang LD, Hong J, Jia XY, Bao JT, Ji YZ, Cheng ML, Liu Q (2013) Z Anorg Allg Chem 639:552–557

    Article  CAS  Google Scholar 

  17. Wang LD, Tao F, Cheng ML, Liu Q, Han W, Wu YJ, Yang DD, Wang LJ (2012) J Coord Chem 65:923–933

    Article  CAS  Google Scholar 

  18. Han W, Cheng ML, Liu Q, Wang LD, Wu YJ (2012) Chin J Inorg Chem 28:1997–2004

    CAS  Google Scholar 

  19. Bao JT, Cheng ML, Liu Q, Han W, Zhai CW, Hong J, Sun XQ (2013) Chin J Inorg Chem 29:1504–1512

    CAS  Google Scholar 

  20. Zhou XH, Du XD, Li GN, Zou JL, You XZ (2009) Cryst Growth Des 9:4487–4496

    Article  CAS  Google Scholar 

  21. Xie CZ, Li RF, Wang LY, Zhang QQ (2010) Z Anorg Allg Chem 636:657–661

    Article  CAS  Google Scholar 

  22. Xia J, Zhao B, Wang HS, Shi W, Ma Y, Song HB, Cheng P, Liao DZ, Yan SP (2007) Inorg Chem 46:3450–3458

    Article  CAS  Google Scholar 

  23. Lincke J, Lässig D, Kobalz M, Bergmann J, Handke M, Mollmer J, Langer M, Roth C, Möller A, Staudt R, Krautscheid H (2012) Inorg Chem 51:7579–7586

    Article  CAS  Google Scholar 

  24. Gadzikwa T, Farha OK, Mulfort KL, Hupp JT, Nguyen ST (2009) Chem Commun 25:3720–3722

    Article  Google Scholar 

  25. Cohen SM (2011) Chem Rev 112:970–1000

    Article  Google Scholar 

  26. Yakimovich SI, Zerova IV, Pakal’nis VV (2008) Russ J Org Chem 44:621–623

    Article  CAS  Google Scholar 

  27. Sheldrick GM (1997) SHELXTL-97, program for X-ray crystal structure determination. University of Göttingen, Germany

    Google Scholar 

  28. Lässig D, Lincke J, Griebel J, Kirmse R, Krautscheid H (2011) Inorg Chem 50:213–219

    Article  Google Scholar 

  29. Ni TJ, Xing FF, Shao M, Zhao YM, Zhu SR, Li MX (2011) Cryst Growth Des 11:2999–3012

    Article  CAS  Google Scholar 

  30. Xi PM, Wang SS, Gao DZ, Wang XG, Sun YQ, Zhang GY, Xu YY (2013) Transit Met Chem 38:873–881

    Article  CAS  Google Scholar 

  31. Li ZF, Chen CJ, Yan LH, Li G, Wu CJ, Lu HJ (2011) Inorg Chim Acta 377:42–49

    Article  CAS  Google Scholar 

  32. Li M, Ling Q, Yang Z, Li BL, Li HY (2013) Cryst Eng Comm 15:3630–3639

    Article  CAS  Google Scholar 

  33. Zhao J, Wang XL, Shi X, Yang QH, Li C (2011) Inorg Chem 50:3198–3205

    Article  CAS  Google Scholar 

  34. Baho N, Zargarian D (2007) Inorg Chem 46:299–308

    Article  CAS  Google Scholar 

  35. Wu JJ, Ye YX, Qiu YY, Qiao ZP, Cao ML, Ye BH (2013) Inorg Chem 52:6450–6456

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are particularly grateful to the Natural Science Foundation of China (Nos. 20971060 and 21101018), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Natural Science Foundation of State Key Laboratory of Coordination Chemistry for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11243_2014_9833_MOESM1_ESM.doc

CCDC 958411, 962642, and 973934 contain the supplementary crystallographic data for the three complexes 1, 2, and 3. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (internet) þ 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk. (DOC 3276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, S., Cheng, Ml., Ren, Y. et al. Three transition metal complexes with uncoordinated carboxyl groups: synthesis, structures, and luminescence properties. Transition Met Chem 39, 559–566 (2014). https://doi.org/10.1007/s11243-014-9833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9833-x

Keywords

Navigation