Experimental Observation of Two Distinct Finger Regimes During Miscible Displacement in Fracture

Abstract

Miscible displacement of two-phase fluids in rough fractures is relevant to some industrial processes, including enhanced oil recovery and geological carbon sequestration. When a less viscous fluid displaces another more viscous fluid, finger instability occurs. Previous works focused on miscible displacement in porous media or Hele-Shaw, but the experimental study was rarely reported for rough fractures. Here, we perform visualization experiments of water displacing glycerol in a transparent fracture model to investigate the effects of flow rate and diffusion in miscible displacement. We quantify the displacement patterns using the sweep efficiency, the mixing length, and the relative contact area. We observe two distinct displacement regimes: dominant finger regime and multiple fingers regime. A critical Peclet number Pe is obtained to identify such two regimes. Below the critical Pe, the channel forms, and the displacement is the dominant finger regime, which results in low sweep efficiency and linearly growth of mixing length at late time. Above this critical Pe, intensive tip-splitting events result in the formation of dendritic displacement pattern, and the displacement is multiple fingers regime, slowing down the growth rate of mixing length at late time and contributes to the higher sweep efficiency. Our work shows a critical Pe that separates the two distinct regimes and improves our understanding of the evolution of the miscible displacement fronts in rough fractures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Afshari, S., Hejazi, S.H., Kantzas, A.: Role of medium heterogeneity and viscosity contrast in miscible flow regimes and mixing zone growth: a computational pore-scale approach. Phys. Rev. Fluids 3, 54501 (2018). https://doi.org/10.1103/PhysRevFluids.3.054501

    Article  Google Scholar 

  2. Al-Shalabi, E.W., Sepehrnoori, K., Pope, G.: Numerical modeling of combined low salinity water and carbon dioxide in carbonate cores. J. Pet. Sci. Eng. 137, 157–171 (2016). https://doi.org/10.1016/j.petrol.2015.11.021

    Article  Google Scholar 

  3. Alzayer, A.N., Voskov, D.V., Tchelepi, H.A.: Relative permeability of near-miscible fluids in compositional simulators. Transp. Porous Media 122, 547–573 (2018). https://doi.org/10.1007/s11242-017-0950-9

    Article  Google Scholar 

  4. Arshadi, M., Rajaram, H., Detwiler, R.L., Jones, T.: High-resolution experiments on chemical oxidation of DNAPL in variable-aperture fractures. Water Resour. Res. 51, 2317–2335 (2015). https://doi.org/10.1002/2014WR016159

    Article  Google Scholar 

  5. Auradou, H., Hulin, J.-P., Roux, S.: Experimental study of miscible displacement fronts in rough self-affine fractures. Phys. Rev. E 63, 66306 (2001). https://doi.org/10.1103/PhysRevE.63.066306

    Article  Google Scholar 

  6. Babadagli, T., Raza, S., Ren, X., Develi, K.: Effect of surface roughness and lithology on the water–gas and water–oil relative permeability ratios of oil-wet single fractures. Int. J. Multiph. Flow 75, 68–81 (2015). https://doi.org/10.1016/j.ijmultiphaseflow.2015.05.005

    Article  Google Scholar 

  7. Benson, S.M., Cole, D.R.: CO2 sequestration in deep sedimentary formations. Elements 4, 325–331 (2008). https://doi.org/10.2113/gselements.4.5.325

    Article  Google Scholar 

  8. Bertels, S.P., DiCarlo, D.A., Blunt, M.J.: Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. Water Resour. Res. 37, 649–662 (2001). https://doi.org/10.1029/2000WR900316

    Article  Google Scholar 

  9. Blackwell, R.J., Rayne, J.R., Terry, W.M.: Factors influencing the efficiency of miscible displacement. Trans. AIME 217, 1–8 (1959). https://doi.org/10.2118/1131-G

    Article  Google Scholar 

  10. Chen, Y.-F., Wu, D.-S., Fang, S., Hu, R.: Experimental study on two-phase flow in rough fracture: phase diagram and localized flow channel. Int. J. Heat Mass Transf. 122, 1298–1307 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.031

    Article  Google Scholar 

  11. Chui, J.Y.Y., de Anna, P., Juanes, R.: Interface evolution during radial miscible viscous fingering. Phys. Rev. E 92, 041003 (2015). https://doi.org/10.1103/PhysRevE.92.041003

    Article  Google Scholar 

  12. Connolly, M., Johns, R.T.: Scale-dependent mixing for adverse mobility ratio flows in heterogeneous porous media. Transp. Porous Media 113, 29–50 (2016). https://doi.org/10.1007/s11242-016-0678-y

    Article  Google Scholar 

  13. D’Errico, G., Ortona, O., Capuano, F., Vitagliano, V.: Diffusion coefficients for the binary system glycerol + water at 25 °C. A velocity correlation study. J. Chem. Eng. Data 49, 1665–1670 (2004). https://doi.org/10.1021/je049917u

    Article  Google Scholar 

  14. Detwiler, R.L., Pringle, S.E., Glass, R.J.: Measurement of fracture aperture fields using transmitted light: an evaluation of measurement errors and their influence on simulations of flow and transport through a single fracture. Water Resour. Res. 35, 2605–2617 (1999). https://doi.org/10.1029/1999WR900164

    Article  Google Scholar 

  15. Dou, Z., Zhou, Z.F., Wang, J.G.: Three-dimensional analysis of spreading and mixing of miscible compound in heterogeneous variable-aperture fracture. Water Sci. Eng. 9, 293–299 (2016). https://doi.org/10.1016/j.wse.2017.01.007

    Article  Google Scholar 

  16. Er, V., Babadagli, T.: Miscible interaction between matrix and fracture: a visualization and simulation study. SPE Reserv. Eval. Eng. 13, 109–117 (2010). https://doi.org/10.2118/117579-PA

    Article  Google Scholar 

  17. Ershadnia, R., Wallace, C.D., Soltanian, M.R.: CO2 geological sequestration in heterogeneous binary media: Effects of geological and operational conditions. Adv. Geo-Energy Res. 4, 392–405 (2020)

    Article  Google Scholar 

  18. Etrati, A., Frigaard, I.A.: Viscosity effects in density-stable miscible displacement flows: experiments and simulations. Phys. Fluids 30, 123104 (2018). https://doi.org/10.1063/1.5065388

    Article  Google Scholar 

  19. Ghesmat, K., Azaiez, J.: Viscous fingering instability in porous media: effect of anisotropic velocity-dependent dispersion tensor. Transp. Porous Media 73, 297–318 (2008). https://doi.org/10.1007/s11242-007-9171-y

    Article  Google Scholar 

  20. Hekmatzadeh, M., Dadvar, M., Sahimi, M.: Pore-network simulation of unstable miscible displacements in porous media. Transp. Porous Media 113, 511–529 (2016). https://doi.org/10.1007/s11242-016-0708-9

    Article  Google Scholar 

  21. Hu, R., Zhou, C.-X., Wu, D.-S., Yang, Z., Chen, Y.-F.: Roughness control on multiphase flow in rock fractures. Geophys. Res. Lett. 46, 12002–12011 (2019). https://doi.org/10.1029/2019GL084762

    Article  Google Scholar 

  22. Jiao, C., Maxworthy, T.: An experimental study of miscible displacement with gravity-override and viscosity-contrast in a Hele Shaw cell. Exp. Fluids 44, 781–794 (2008). https://doi.org/10.1007/s00348-007-0434-8

    Article  Google Scholar 

  23. Kahrobaei, S., Farajzadeh, R., Suicmez, V.S., Bruining, J.: Gravity-enhanced transfer between fracture and matrix in solvent-based enhanced oil recovery. Ind. Eng. Chem. Res. 51, 14555–14565 (2012). https://doi.org/10.1021/ie3014499

    Article  Google Scholar 

  24. Lee, H.-B., Yeo, I.W., Ji, S.-H., Lee, K.-K.: Wettability-dependent DNAPL migration in a rough-walled fracture. J. Contam. Hydrol. 113, 44–55 (2010). https://doi.org/10.1016/j.jconhyd.2009.12.006

    Article  Google Scholar 

  25. Lu, M., Su, Y., Zhan, S., Almrabat, A.: Modeling for reorientation and potential of enhanced oil recovery in refracturing. Adv. Geo-Energy Res. 4, 20–28 (2020)

    Article  Google Scholar 

  26. Malhotra, S., Sharma, M.M., Lehman, E.R.: Experimental study of the growth of mixing zone in miscible viscous fingering. Phys. Fluids 27, 14105 (2015). https://doi.org/10.1063/1.4905581

    Article  Google Scholar 

  27. Mason, G., Morrow, N.R.: Developments in spontaneous imbibition and possibilities for future work. J. Pet. Sci. Eng. 110, 268–293 (2013). https://doi.org/10.1016/j.petrol.2013.08.018

    Article  Google Scholar 

  28. Paterson, L.: Fingering with miscible fluids in a Hele Shaw cell. Phys. Fluids 28, 26–30 (1985). https://doi.org/10.1063/1.865195

    Article  Google Scholar 

  29. Petitjeans, P., Chen, C.-Y., Meiburg, E., Maxworthy, T.: Miscible quarter five-spot displacements in a Hele-Shaw cell and the role of flow-induced dispersion. Phys. Fluids 11, 1705–1716 (1999). https://doi.org/10.1063/1.870037

    Article  Google Scholar 

  30. Ruith, M., Meiburg, E.: Miscible rectilinear displacements with gravity override. Part 1. Homogeneous porous medium. J. Fluid Mech. 420, 225–257 (2000). https://doi.org/10.1017/S0022112000001543

    Article  Google Scholar 

  31. Saffman, P.G., Taylor, G.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312–329 (1958). https://doi.org/10.1098/rspa.1958.0085

    Article  Google Scholar 

  32. Sajjadi, M., Azaiez, J.: Scaling and unified characterization of flow instabilities in layered heterogeneous porous media. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 88, 33017 (2013). https://doi.org/10.1103/PhysRevE.88.033017

    Article  Google Scholar 

  33. Shahnazari, M.R., Maleka Ashtiani, I., Saberi, A.: Linear stability analysis and nonlinear simulation of the channeling effect on viscous fingering instability in miscible displacement. Phys. Fluids 30, 34106 (2018). https://doi.org/10.1063/1.5019723

    Article  Google Scholar 

  34. Shokri, H., Kayhani, M.H., Norouzi, M.: Nonlinear simulation and linear stability analysis of viscous fingering instability of viscoelastic liquids. Phys. Fluids 29, 33101 (2017). https://doi.org/10.1063/1.4977443

    Article  Google Scholar 

  35. Tan, C.T., Homsy, G.M.: Stability of miscible displacements in porous media: rectilinear flow. Phys. Fluids 29, 3549–3556 (1986). https://doi.org/10.1063/1.865832

    Article  Google Scholar 

  36. Tan, C.T., Homsy, G.M.: Stability of miscible displacements in porous media: radial source flow. Phys. Fluids 30, 1239–1245 (1987). https://doi.org/10.1063/1.866289

    Article  Google Scholar 

  37. Tan, C.T., Homsy, G.M.: Simulation of nonlinear viscous fingering in miscible displacement. Phys. Fluids 31, 1330–1338 (1988). https://doi.org/10.1063/1.866726

    Article  Google Scholar 

  38. Taylor, G.I.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186–203 (1953). https://doi.org/10.1098/rspa.1953.0139

    Article  Google Scholar 

  39. Videbæk, T.E., Nagel, S.R.: Diffusion-driven transition between two regimes of viscous fingering. Phys. Rev. Fluids 4, 33902 (2019). https://doi.org/10.1103/PhysRevFluids.4.033902

    Article  Google Scholar 

  40. Yang, Z., Méheust, Y., Neuweiler, I., Hu, R., Niemi, A., Chen, Y.-F.: Modeling immiscible two-phase flow in rough fractures from capillary to viscous fingering. Water Resour. Res. 55, 2033–2056 (2019). https://doi.org/10.1029/2018WR024045

    Article  Google Scholar 

  41. Zimmerman, W.B., Homsy, G.M.: Nonlinear viscous fingering in miscible displacement with anisotropic dispersion. Phys. Fluids A Fluid Dyn. 3, 1859–1872 (1991). https://doi.org/10.1063/1.857916

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Key R&D Program of China (No. 2019YFC0605001) and the National Natural Science Foundation of China (Nos. 51925906, 51779188).

Author information

Affiliations

Authors

Contributions

XSC and RH designed and performed the experiments and data processing and wrote the manuscript. XSC, RH, WG, and YFC made scientific contributions to data interpretation and were actively involved in preparing the manuscript.

Corresponding author

Correspondence to Ran Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, XS., Hu, R., Guo, W. et al. Experimental Observation of Two Distinct Finger Regimes During Miscible Displacement in Fracture. Transp Porous Med (2021). https://doi.org/10.1007/s11242-021-01547-9

Download citation

Keywords

  • Rough fractures
  • Miscible displacement
  • Dominant finger regime
  • Multiple fingers regime
  • Sweep efficiency
  • Mixing length