Semi-analytical Approach to Modeling Forchheimer Flow in Porous Media at Meso- and Macroscales


Darcy’s law (which states that a fluid flow rate is directly proportional to the pressure gradient) is shown to be accurate in a rather narrow range of flow velocities. Numerous studies show that at low pressure gradients gas slippage effect occurs, which gives overestimated flow rates compared to Darcy’s law. At higher flow rates, Darcy’s law is usually replaced by the Forchheimer equation which accounts for inertial forces including a quadratic term in the flow rate. Darcy’s and Forchheimer’s laws and the problem of detecting transitions between their ranges of applicability are discussed in this study. Analysis of experimental data shows that deviation from Darcy’s law is governed by the Forchheimer number, which is defined by the authors as a product of tortuosity and Reynolds number. The use of the Forchheimer number and semi-analytical approaches enables us to describe non-Darcy flow as a simple universal equation valid for any flow geometry. Comparison of the experimental data with predictions based on a semi-analytical model shows excellent agreement for a wide range of reservoir properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Code Availability

Code sharing is not applicable to this article as no software application or custom code was generated or analyzed during the current study.


\({D}_{\mathrm{p}}\) :

Particles diameter, m

\({D}_{\mathrm{t}}\) :

Throat diameter, m

\(E\) :

Non-Darcy effect

\(F\) :

Formation resistivity factor

\(\mathrm{Fo}\) :

Forchheimer number

\({\mathrm{Fo}}_{\mathrm{D}}\) :

Forchheimer number related to Darcy flow conditions

\({\mathrm{Fo}}_{\mathrm{c}}\) :

Critical Forchheimer number

\({\mathrm{Fo}}_{\mathrm{c exp}}\) :

Experimentally measured critical Forchheimer number

\({\mathrm{Fo}}_{\mathrm{c sim}}\) :

Critical Forchheimer number obtained during the simulation

\(P\) :

Pressure, Pa

\({P}_{0}\) :

Standard pressure, Pa

\({P}_{1}\) :

Inlet pressure, Pa

\({P}_{2}\) :

Outlet pressure, Pa

\({P}_{\mathrm{D}}\) :

Pressure related to Darcy flow conditions, Pa

\({P}_{\mathrm{F}}\) :

Pressure related to Forchheimer flow conditions, Pa

\({P}_{\mathrm{e}}\) :

External boundary pressure, Pa

\({P}_{\mathrm{w}}\) :

Bottomhole pressure, Pa

\(\mathrm{Re}\) :

Reynolds number

\({\mathrm{Re}}_{\mathrm{D}}\) :

Reynolds number related to Darcy flow conditions

\({\mathrm{Re}}_{\mathrm{F}}\) :

Reynolds number related to Forchheimer flow conditions

\({\mathrm{Re}}_{\mathrm{c}}\) :

Critical Reynolds number

\(d\) :

Mean pore diameter, m

\({d}_{\mathrm{eqv}}\) :

Equivalent pore diameter, m

\(k\) :

Permeability, mD

\(q\) :

Gas flow rate, m3/d

\({q}_{\mathrm{D}}\) :

Volumetric flow rate related to Darcy flow conditions, m3/d

\({q}_{\mathrm{Dm}}\) :

Mass flow rate related to Darcy flow conditions, kg/d

\({q}_{\mathrm{F}}\) :

Volumetric flow rate related to Forchheimer flow conditions, m3/d

\({q}_{\mathrm{Fm}}\) :

Mass flow rate related to Forchheimer flow conditions, kg/d

\(r_{\text{e}}\) :

External drainage radius, m

\({r}_{\mathrm{w}}\) :

Wellbore radius, m

\(u\) :

Velocity, m/s

\({u}_{\mathrm{D}}\) :

Volumetric velocity related to Darcy flow conditions, m/s

\({u}_{\mathrm{Dm}}\) :

Mass velocity related to Darcy flow conditions, kg/(s m2)

\({u}_{\mathrm{F}}\) :

Volumetric velocity related to Forchheimer flow conditions, m/s

\({u}_{\mathrm{Fm}}\) :

Mass velocity related to Forchheimer flow conditions, kg/(s m2)

\(h\) :

Formation thickness, m

\(\mathrm{grad} \,P\) :

Pressure gradient, Pa/m

\(r\) :

Pore throat radius in Table 2, m

\(x\) :

Linear coordinate, m

\(R2\) :

Determination coefficient

\({B}_{1}\) :

Constant in Eq. 20

\(a\) :

Constants in Table 1

\(b\) :

Constants in Table 1

\(c\) :

Constant in Eq. 4

\({c}^{^{\prime}}\) :

Constant in Eq. 5

\(a,b,c\) :

Coefficients in Eq. 34

\({a}_{1},{b}_{1},{c}_{1}\) :

Coefficients in Eq. 57

\(\alpha \) :

Constant in Eq. 20

\(\beta \) :

Non-Darcy coefficient, m1

\(\gamma \) :

Weak inertia factor

\(\lambda \) :

New turbulent flow correlation factor, ft

\(\mu \) :

Viscosity, Pa s

\(\rho \) :

Density, kg/m3

\({\rho }_{0}\) :

Density at standard conditions, kg/m3

\(\tau \) :


\(\phi \) :

Porosity, fraction

\(\mathrm{D}\) :

Related to Darcy flow conditions

\(\mathrm{F}\) :

Related to Forchheimer flow conditions

\(\mathrm{c}\) :


\(\mathrm{e}\) :


\(\mathrm{eqv}\) :


\(\mathrm{exp}\) :


\(\mathrm{m}\) :


\(\mathrm{p}\) :


\(\mathrm{sim}\) :


\(\mathrm{t}\) :


\(\mathrm{w}\) :



  1. Ahlers, C.F., Finsterle, S., Wu, Y.S., Bodvarsson, G.S.: Determination of pneumatic permeability of a multi-layered system by inversion of pneumatic pressure data. In: Proceedings of the 1995 AGU Fall Meeting. San Francisco, California (1995)

  2. Ansah, E.O., Vo Thanh, H., Sugai, Y., Nguele, R., Sasaki, K.: Microbe-induced fluid viscosity variation: field-scale simulation, sensitivity and geological uncertainty. J. Petrol. Explor. Prod. Technol. 10, 1983–2003 (2020).

    Article  Google Scholar 

  3. Barak, A.Z.: Comments on ‘high velocity flow in porous media’ by Hassanizadeh and Gray. Transp. Porous Med. 2, 533–535 (1987).

    Article  Google Scholar 

  4. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  5. Belhaj, H.A., Agha, K.R., Nouri, A.M., Butt, S.D., Vaziri, H.F. Islam M.R.: Numerical simulation of Non-Darcy flow utilizing the new Forchheimer’s diffusivity equation. SPE 81499. In: Middle East Oil Show. Bahrain (2003).

  6. Brown, K.E.: The Technology of Artificial Lift Methods, pp. 8–10. Petroleum Publishing Co., Tulsa (1980)

    Google Scholar 

  7. Chilton, T.H., Colburn, A.P.: Pressure drop in packed tubes. Ind. Eng. Chem. 23(8), 913–919 (1931).

    Article  Google Scholar 

  8. Choi, C.S., Song, J.J.: Estimation of the non-Darcy coefficient using supercritical CO2 and various sandstones. JCR Solid Earth. 124, 442–455 (2019).

    Article  Google Scholar 

  9. Coles, M.E., Hartman, K.J.: Non-Darcy measurements in dry core and the effect of immobile liquid. SPE 39977. In: SPE Gas Technology Symposium. Calgary (1998).

  10. Cooper, J.W., Wang, X., Mohanty, K.K.: Non-Darcy flow studies in anisotropic porous media. Soc. Petrol. Eng. J. 4(4), 334–341 (1999).

    Article  Google Scholar 

  11. Cornell, D., Katz, D.L.: Flow of gases through consolidated porous media. Ind. Eng. Chem. 45(10), 2145–2152 (1953).

    Article  Google Scholar 

  12. Darcy, H.P.G.: Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont, Paris (1856)

    Google Scholar 

  13. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48(2), 89–94 (1952)

    Google Scholar 

  14. Fancher, G.H., Lewis, J.A.: Flow of simple fluids through porous materials. Ind. Eng. Chem. 25(10), 1139–1147 (1933).

    Article  Google Scholar 

  15. Firoozabadi, A., Katz, D.L.: An analysis of high-velocity gas flow through porous media. J. Petrol. Technol. (1979).

    Article  Google Scholar 

  16. Firouzi, M., Alnoaimi, K., Kovscek, A., Wilcox, J.: Klinkenberg effect on predicting and measuring helium permeability in gas shales. Int. J. Coal Geol. 123, 62–68 (2014).

    Article  Google Scholar 

  17. Forchheimer, P.: Wasserberwegung durch Boden. Z Vereines deutscher Ing. 45(50), 1782–1788 (1901)

    Google Scholar 

  18. Frederick, D.C., Grave, R.M: New correlations to predict non‐Darcy flow coefficients at immobile and mobile water saturation. SPE 28451. In: SPE Annual Technical Conference and Exhibition. New Orleans (1994).

  19. Friedel, T., Voigt, H.D.: Investigation of non-Darcy flow in tight-gas reservoirs with fractured wells. J. Pet. Sci. Eng. 54, 112–128 (2006).

    Article  Google Scholar 

  20. Fuente, M., Munoz, E., Sicilia, I., Goggins, J., Hung, L.C., Frutos, B., Foley, M.: Investigation of gas flow through soils and granular fill materials for the optimisation of radon soil depressurisation system. J. Environ. Radioact. 198, 200–209 (2019).

    Article  Google Scholar 

  21. Geertsma, J.: Estimating the coefficient of inertial resistance in fluid flow through porous media. Soc. Petrol. Eng. J. (1974).

    Article  Google Scholar 

  22. Ghane, E., Fausey, N.R., Brown, L.C.: Non-Darcy flow of water through woodchip media. J. Hydrol. 519, 3400–3409 (2014).

    Article  Google Scholar 

  23. Gidley, J.L.: A method for correcting dimensionless fracture conductivity for non-Darcy flow effect. SPE 20710. SPE Prod. Eng. J. (1991).

    Article  Google Scholar 

  24. Gjengedal, S., Brøtan, V., Buset, O.T., Larsen, E., Berg, O.A., Torsæter, O., Ramstad, R.K., Hilmo, B.O., Frengstad, B.S.: Fluid flow through 3D-printed particle beds: a new technique for understanding, validating, and improving predictability of permeability from empirical equations. Transp. Porous Med. 134, 1–40 (2020).

    Article  Google Scholar 

  25. Green, L.J., Duwez, P.: Fluid flow through porous metals. J. Appl. Mech. 18, 39–45 (1951)

    Google Scholar 

  26. Holditch, S.A., Morse, R.A.: The effects of non-Darcy flow on the behavior of hydraulically fractured gas wells. J. Pet. Technol. 28(10), 1179–1196 (1976).

    Article  Google Scholar 

  27. Homuth, S., Götz, A.E., Sass, I.: Physical Properties of the geothermal carbonate reservoirs of the Molasse Basin, Germany-Outcrop Analogue vs. Reservoir Data. World Geothermal Congress, Melbourne (2015)

    Google Scholar 

  28. Huang, H., Ayoub, J.A.: Applicability of the Forchheimer equation for non‐Darcy flow in porous media. SPE 102715. In: SPE Annual Technical Conference and Exhibition. Texas (2008).

  29. Hubbert, M.K.: Darcy law and the field equations of the flow of underground fluids. Trans. Am. Inst. Min. Mandal. Eng. 207, 222–239 (1956).

    Article  Google Scholar 

  30. Irmay, S.: On the theoretical derivation of Darcy and Forchheimer formulas. J. Geophys. Res. 39, 702–707 (1958).

    Article  Google Scholar 

  31. Janicek, J.D., Katz, D.L.: Applications of unsteady state gas flow calculations. In: Proceedings of University of Michigan Research Conference. June 20 (1955)

  32. Jones, S.C.: Using the inertial coefficient, β, to characterize heterogeneity in reservoir rock. SPE 16949. In: SPE Annual Technical Conference and Exhibition. New Orleans (1987).

  33. Kadi, K.S.: Non-Darcy flow in dissolved gas-drive reservoirs. SPE 9301. In: SPE Annual Fall Technical Conference. Dallas (1980).

  34. Klinkenberg, L.J.: The permeability of porous media to liquids and gases, drilling and production practice. Am. Petrol. Inst. 200–213 (1941)

  35. Kollbotn, L., Bratteli, F.: An alternative approach to the determination of the internal flow coefficient. In: International Symposium of the Society of Core Analysts. Toronto (2005)

  36. Kutasov, I.M.: Equation predicts non-Darcy flow coefficient. Oil Gas J. 91(11), 66–67 (1993)

    Google Scholar 

  37. Li, D., Engler, T.W.: Literature review on correlations of the non-Darcy coefficient. SPE 70015. In: SPE Permian Basin Oil and Gas Recovery Conference. Midland (2001).

  38. Liu, X., Civan, F., Evans, R.D.: Correlation of the non-Darcy flow coefficient. J. Can. Pet. Tech. 34(10), 50–54 (1995).

    Article  Google Scholar 

  39. Ma, H., Ruth, D.W.: The microscopic analysis of high Forchheimer number flow in porous media. Transp. Porous Med. 13, 139–160 (1993).

    Article  Google Scholar 

  40. Macdonald, I.F., El-Sayed, M.S., Mow, K., Dullien, F.A.L.: Flow through porous media: the Ergun Equation revisited. Ind. Eng. Chem. Fundam. 18, 189–208 (1979).

    Article  Google Scholar 

  41. Macini, P., Mesini, E., Viola, R.: Laboratory measurements of non-Darcy flow coefficients in natural and artificial unconsolidated porous media. J. Pet. Sci. Eng. 77(3–4), 365–374 (2011).

    Article  Google Scholar 

  42. Martins, J.P., Milton-Taylor, D., Leung, H.K.: The effects of non-Darcy flow in propped hydraulic fractures. SPE 20790. In: Proceedings of the SPE Annual Technical Conference. New Orleans (1990).

  43. Mei, C.C., Auriault, J.L.: The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222, 647–663 (1991).

    Article  Google Scholar 

  44. Millionshikov, M.D.: Degeneration of homogeneous isotropic turbulence in a viscous incompressible fluid. Rep. Acad. Sci. USSR. 22(5), 236–240 (1935) (in Russian)

    Google Scholar 

  45. Morad, S., Al-Ramadan, K., Ketzer, J.M., De Ros, L.F.: The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy. AAPG Bull. 94(8), 1267–1309 (2010).

    Article  Google Scholar 

  46. Muljadi, B.P., Blunt, M.J., Raeini, A.Q., Bijeljic, B.: The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation. Adv. Water. Resour. 95, 329–340 (2016)

    Article  Google Scholar 

  47. Noman, R., Shrimanker, N., Archer, J.S.: Estimation of the coefficient of inertial resistance in high-rate gas wells. SPE 14207. In: SPE Annual Technical Conference. Las Vegas (1985).

  48. Pavlovsky, N.: Theory of Movement of Groundwater Under Hydraulic Engineering Constructions and Its Main Applications. Publishing House of Science and Melioration Institute, Petrograd (1922) (in Russian)

    Google Scholar 

  49. Rasoloarijaona, M., Auriault, J.L.: Nonlinear seepage flow through a rigid porous medium. Eur. J. Mech. B/Fluids 13, 177–195 (1994)

    Google Scholar 

  50. Ruth, D., Ma, H.: On the derivation of the Forchheimer equation by means of the average theorem. Transp. Porous Med. 7(3), 255–264 (1992).

    Article  Google Scholar 

  51. Scheidegger, A.E.: The Physics of Flow Through Porous Media. University of Toronto Press, Toronto (1974)

    Google Scholar 

  52. Shelkachev, V.N., Lapuk, B.B.: Groundwater Hydraulics. p. 736. ISBN: 5-93972-081-1, Moscow—Igevsk (2001) (in Russian)

  53. Skjetne, E.: High-velocity flow in porous media; analytical, numerical and experimental studies. Doctoral Thesis at Department of Petroleum Engineering and Applied Geophysics, Faculty of Applied Earth Sciences and Metallurgy, Norwegian University of Science and Technology (1995)

  54. Skjetne, E., Auriault, J.L.: New insights on steady, non-linear flow in porous media. Eur. J. Mech. B/Fluids 18(1), 131–145 (1999).

    Article  Google Scholar 

  55. Tek, M.R., Coats, K.H., Katz, D.L.: The effect of turbulence on flow of natural gas through porous reservoirs. J. Petrol. Technol. AIME Trans. 222, 799–806 (1962).

    Article  Google Scholar 

  56. Tessem, R.: High Velocity Coefficient’s Dependence on Rock Properties: A Laboratory Study. Thesis Pet. Inst., NTH. Trondheim (1980)

  57. Thauvin, F., Mohanty, K.K.: Network modeling of non-Darcy flow through porous media. Transp. Porous Med. 31, 19–37 (1998).

    Article  Google Scholar 

  58. Torsæter, O., Tessem, R., Berge, B.: High Velocity Coefficient’s Dependence on Rock Properties. SINTEF report, NTH. Trondheim (1981)

  59. Whitaker, S.: The Forchheimer equation: a theoretical development. Transp. Porous Med. 25, 27–61 (1996).

    Article  Google Scholar 

  60. Wodie, J.C., Levy, T.: Correction non lineaire de la loi de Darcy. C. R. Acad. Sci. 2(312), 157–161 (1991)

    Google Scholar 

  61. Wong, S.W.: Effect of liquid saturation on turbulence factors for gas-liquid systems. J. Can. Petrol. Tech. 9(4), 274–278 (1970).

    Article  Google Scholar 

  62. Wu, Y.S., Pruess, K., Persoff, P.: Gas flow in porous media with Klinkenberg effects. Transp. Porous Media 32(1), 117–137 (1998).

    Article  Google Scholar 

  63. Zeng, Z., Grigg, R.: A criterion for non-Darcy flow in porous media. Transp. Porous Med. 63, 57–69 (2006).

    Article  Google Scholar 

  64. Zolotukhin, A.B., Gayubov, A.T.: Machine learning in reservoir permeability prediction and modeling of fluid flow in porous media. IOP Conf. Ser. Mater. Sci. Eng. 700, 012023 (2019).

    Article  Google Scholar 

  65. Zolotukhin, A.B., Ursin, J.R.: Fundamentals of Petroleum Reservoir Engineering. Høyskoleforlaget AS – Norwegian Academic Press, Kristiansand (2000b)

    Google Scholar 

  66. Zolotukhin, A.B., Ursin, J.R.: Introduction to Petroleum Reservoir Engineering. Norwegian Academic Press, Høyskoleforlaget (2000a)

    Google Scholar 

Download references


Not applicable.

Author information




All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by ABZ and ATG The first draft of the manuscript was written by ABZ and ATG, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. ABZ conceived the study and contributed to project administration, supervision, and validation. ABZ and ATG curated the data, performed the formal analysis, and contributed to investigation, methodology, resources, and writing—review and editing. Funding acquisition is not applicable. ATG contributed to software, visualization, and writing—original draft.

Corresponding author

Correspondence to A. B. Zolotukhin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zolotukhin, A.B., Gayubov, A.T. Semi-analytical Approach to Modeling Forchheimer Flow in Porous Media at Meso- and Macroscales. Transp Porous Med 136, 715–741 (2021).

Download citation


  • Forchheimer’s law
  • Non‐Darcy coefficient
  • Reynolds number
  • Forchheimer number
  • Tortuosity
  • Permeability
  • Porosity