Skip to main content
Log in

Modelling Imbibition Processes in Heterogeneous Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Imbibition is a commonly encountered multiphase problem in various fields, and exact prediction of imbibition processes is a key issue for better understanding capillary flow in heterogeneous porous media. In this work, a numerical framework for describing imbibition processes in porous media with material heterogeneity is proposed to track the moving wetting front with the help of a partially saturated region at the front vicinity. A new interface treatment, named the interface integral method, is developed here, combined with which the proposed numerical model provides a complete framework for imbibition problems. After validation of the current model with existing experimental results of one-dimensional imbibition, simulations on a series of two-dimensional cases are analysed with the presences of multiple porous phases. The simulations presented here not only demonstrate the suitability of the numerical framework on complex domains but also present its feasibility and potential for further engineering applications involving imbibition in heterogeneous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Maktoumi, A., Kacimov, A., Al-Ismaily, S., Al-Busaidi, H., Al-Saqri, S.: Infiltration into two-layered soil: the Green-Ampt and Averyanov models revisited. Transp. Porous Media 109(1), 169–193 (2015)

    Article  Google Scholar 

  • Alyafei, N., Blunt, M.J.: Estimation of relative permeability and capillary pressure from mass imbibition experiments. Adv. Water Resour. 115, 88–94 (2018)

    Article  Google Scholar 

  • Böttcher, C.J.F., van Belle, O.C., Bordewijk, P., Rip, A.: Theory of Electric Polarization. Elsevier, Amsterdam (1978)

    Google Scholar 

  • Bal, K., Fan, J., Sarkar, M., Ye, L.: Differential spontaneous capillary flow through heterogeneous porous media. Int. J. Heat Mass Transf. 54(13–14), 3096–3099 (2011)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Courier Corporation, North Chelmsford (2013)

    Google Scholar 

  • Block, R.J., Durrum, E.L., Zweig, G.: A Manual of Paper Chromatography and Paper Electrophoresis. Elsevier, Amsterdam (2016)

    Google Scholar 

  • Brooks, R., Corey, T.: Hydraulic Properties of Porous Media, Hydrology Papers, p. 24. Colorado State University, Fort Collins (1964)

    Google Scholar 

  • Cai, J., Perfect, E., Cheng, C.-L., Hu, X.: Generalized modeling of spontaneous imbibition based on Hagen–Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir 30(18), 5142–5151 (2014)

    Article  Google Scholar 

  • Cai, J., You, L., Hu, X., Wang, J., Peng, R.: Prediction of effective permeability in porous media based on spontaneous imbibition effect. Int. J. Mod. Phys. C 23(07), 1250054 (2012)

    Article  Google Scholar 

  • Cai, J., Yu, B.: A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media 89(2), 251–263 (2011)

    Article  Google Scholar 

  • Conrath, M., Fries, N., Zhang, M., Dreyer, M.E.: Radial capillary transport from an infinite reservoir. Transp. Porous Media 84(1), 109–132 (2010)

    Article  Google Scholar 

  • Debbabi, Y., Jackson, M.D., Hampson, G.J., Fitch, P.J., Salinas, P.: Viscous crossflow in layered porous media. Transp. Porous Media 117(2), 281–309 (2017)

    Article  Google Scholar 

  • Di Donato, G., Lu, H., Tavassoli, Z., Blunt, M.J.: Multirate-transfer dual-porosity modeling of gravity drainage and imbibition. SPE J. 12(01), 77–88 (2007)

    Article  Google Scholar 

  • Durlofsky, L.J.: Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27(5), 699–708 (1991)

    Article  Google Scholar 

  • Elizalde, E., Urteaga, R., Berli, C.L.: Rational design of capillary-driven flows for paper-based microfluidics. Lab Chip 15(10), 2173–2180 (2015)

    Article  Google Scholar 

  • Ern, A., Mozolevski, I., Schuh, L.: Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Comput. Methods Appl. Mech. Eng. 199(23–24), 1491–1501 (2010)

    Article  Google Scholar 

  • Fries, N., Dreyer, M.: An analytic solution of capillary rise restrained by gravity. J. Colloid Interface Sci. 320(1), 259–263 (2008)

    Article  Google Scholar 

  • Fries, N., Odic, K., Conrath, M., Dreyer, M.: The effect of evaporation on the wicking of liquids into a metallic weave. J. Colloid Interface Sci. 321(1), 118–129 (2008)

    Article  Google Scholar 

  • Guerrero-Martínez, F.J., Younger, P.L., Karimi, N., Kyriakis, S.: Three-dimensional numerical simulations of free convection in a layered porous enclosure. Int. J. Heat Mass Transf. 106, 1005–1013 (2017)

    Article  Google Scholar 

  • Hall, C.: Barrier performance of concrete: a review of fluid transport theory. Mater. Struct. 27(5), 291–306 (1994)

    Article  Google Scholar 

  • Hanžič, L., Kosec, L., Anžel, I.: Capillary absorption in concrete and the Lucas–Washburn equation. Cement Concr. Compos. 32(1), 84–91 (2010)

    Article  Google Scholar 

  • Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)

    Article  Google Scholar 

  • Helmig, R., Weiss, A., Wohlmuth, B.I.: Dynamic capillary effects in heterogeneous porous media. Comput. Geosci. 11(3), 261–274 (2007)

    Article  Google Scholar 

  • Huinink, H.: Fluids in porous media: Transport and phase changes, pp. 1–116 (2016)

  • Jin, Y., Li, X., Zhao, M., Liu, X., Li, H.: A mathematical model of fluid flow in tight porous media based on fractal assumptions. Int. J. Heat Mass Transf. 108, 1078–1088 (2017)

    Article  Google Scholar 

  • Kun-Can, Z., Tong, W., Hai-Cheng, L., Zhi-Jun, G., Wen-Fei, W.: Fractal analysis of flow resistance in random porous media based on the staggered pore-throat model. Int. J. Heat Mass Transf. 115, 225–231 (2017)

    Article  Google Scholar 

  • Lewandowska, J., Szymkiewicz, A., Auriault, J.-L.: Upscaling of Richards’ equation for soils containing highly conductive inclusions. Adv. Water Resour. 28(11), 1159–1170 (2005)

    Article  Google Scholar 

  • Liu, M., Wu, J., Gan, Y., Hanaor, D.A., Chen, C.: Evaporation limited radial capillary penetration in porous media. Langmuir 32(38), 9899–9904 (2016)

    Article  Google Scholar 

  • Liu, M., Wu, J., Gan, Y., Hanaor, D.A., Chen, C.: Tuning capillary penetration in porous media: combining geometrical and evaporation effects. Int. J. Heat Mass Transf. 123, 239–250 (2018)

    Article  Google Scholar 

  • Liu, Z., Hu, J., Zhao, Y., Qu, Z., Xu, F.: Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics. Appl. Therm. Eng. 88, 280–287 (2015)

    Article  Google Scholar 

  • Lucas, R.: Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid-Zeitschrift 23(1), 15–22 (1918)

    Article  Google Scholar 

  • Mendez, S., Fenton, E.M., Gallegos, G.R., Petsev, D.N., Sibbett, S.S., Stone, H.A., Zhang, Y., López, G.P.: Imbibition in porous membranes of complex shape: quasi-stationary flow in thin rectangular segments. Langmuir 26(2), 1380–1385 (2009)

    Article  Google Scholar 

  • Meng, Q., Liu, H., Wang, J.: A critical review on fundamental mechanisms of spontaneous imbibition and the impact of boundary condition, fluid viscosity and wettability. Adv. Geo-energy Res. 1, 1–17 (2017)

    Article  Google Scholar 

  • Morrow, N.R., Mason, G.: Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface Sci. 6(4), 321–337 (2001)

    Article  Google Scholar 

  • Navarro, V., Yustres, A., Cea, L., Candel, M., Juncosa, R., Delgado, J.: Characterization of the water flow through concrete based on parameter estimation from infiltration tests. Cem. Concr. Res. 36(9), 1575–1582 (2006)

    Article  Google Scholar 

  • Nguyen, T.H., Fraiwan, A., Choi, S.: Based batteries: a review. Biosens. Bioelectron. 54, 640–649 (2014)

    Article  Google Scholar 

  • Patel, H.S., Meher, R.: Modelling of imbibition phenomena in fluid flow through heterogeneous inclined porous media with different porous materials. Nonlinear Eng. 6(4), 263–275 (2017)

    Article  Google Scholar 

  • Perez-Cruz, A., Stiharu, I., Dominguez-Gonzalez, A.: Two-dimensional model of imbibition into paper-based networks using Richards’ equation. Microfluid. Nanofluid. 21(5), 98 (2017)

    Article  Google Scholar 

  • Pettersen, Ø.: Simulation of two-phase flow in porous rocks on a laboratory scale: diffusion operator splitting and consistency. Comput. Methods Appl. Mech. Eng. 65(3), 229–252 (1987)

    Article  Google Scholar 

  • Quéré, D.: Inertial capillarity. EPL (Europhys. Lett.) 39(5), 533 (1997)

    Article  Google Scholar 

  • Reyssat, M., Sangne, L., Van Nierop, E., Stone, H.: Imbibition in layered systems of packed beads. EPL (Europhys. Lett.) 86(5), 56002 (2009)

    Article  Google Scholar 

  • Rokhforouz, M., Akhlaghi Amiri, H.: Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium. Phys. Fluids 29(6), 062104 (2017)

    Article  Google Scholar 

  • Schneider, M., Köppl, T., Helmig, R., Steinle, R., Hilfer, R.: Stable propagation of saturation overshoots for two-phase flow in porous media. Transp. Porous Media 121(3), 621–641 (2018)

    Article  Google Scholar 

  • Spaid, M.A., Phelan Jr., F.R.: Modeling void formation dynamics in fibrous porous media with the lattice Boltzmann method. Compos. A Appl. Sci. Manuf. 29(7), 749–755 (1998)

    Article  Google Scholar 

  • Tang, R., Yang, H., Gong, Y., Liu, Z., Li, X., Wen, T., Qu, Z., Zhang, S., Mei, Q., Xu, F.: Improved analytical sensitivity of lateral flow assay using sponge for HBV nucleic acid detection. Sci. Rep. 7(1), 1360 (2017)

    Article  Google Scholar 

  • Warren, J., Price, H.: Flow in heterogeneous porous media. Soc. Pet. Eng. J. 1(03), 153–169 (1961)

    Article  Google Scholar 

  • Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17(3), 273 (1921)

    Article  Google Scholar 

  • Xiao, J., Cai, J., Xu, J.: Saturated imbibition under the influence of gravity and geometry. J. Colloid Interface Sci. 521, 226–231 (2018)

    Article  Google Scholar 

  • Xiao, J., Stone, H.A., Attinger, D.: Source-like solution for radial imbibition into a homogeneous semi-infinite porous medium. Langmuir 28(9), 4208–4212 (2012)

    Article  Google Scholar 

  • Zhuang, L., Hassanizadeh, S.M., Kleingeld, P.J., van Genuchten, M.T.: Revisiting the horizontal redistribution of water in soils: Experiments and numerical modeling. Water Resour. Res. 53(9), 7576–7589 (2017)

    Article  Google Scholar 

  • Zienkiewicz, O.C., Taylor, R.L., Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. McGraw-hill, London (1977)

    Google Scholar 

  • Zimmerman, R.W.: Thermal conductivity of fluid-saturated rocks. J. Pet. Sci. Eng. 3(3), 219–227 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Australian Research Council (Projects DP170102886) and The University of Sydney SOAR Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiang Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suo, S., Liu, M. & Gan, Y. Modelling Imbibition Processes in Heterogeneous Porous Media. Transp Porous Med 126, 615–631 (2019). https://doi.org/10.1007/s11242-018-1146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1146-7

Keywords

Navigation