Skip to main content
Log in

Fractal and Multifractal Characteristics of Pore Throats in the Bakken Shale

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

To evaluate pore structures of the Bakken Shale, which is one of the most important factors that affect petrophysical properties, high-pressure mercury intrusion was employed in this study. Pore structures such as pore-throat size, pore-throat ratio, and fractal attributes are investigated in this major shale play. Pore-throat size from 3.6 to 200 um is widely distributed in these shale samples. Accordingly, pore-throat size distributions demonstrate the multimodal behavior within the samples. The whole pore-throat network can be divided into four clusters: one set of large pores, two transitional/intermediate pore groups, and one set of smaller pores. The fractal analysis revealed that fractal dimensions decrease as the pore-throat size decreases. The multifractal analysis demonstrated that as the maturity of the shale samples increases, pore-throat size distributions would become more uniform and pore structures tend to become more homogeneous. The results are compared to our previous results obtained from nitrogen gas adsorption for further verifications of fractal behavior. Finally, although fractal analysis of mercury intrusion and nitrogen gas adsorption were comparable, the results of multifractal analysis from these two methods were not identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Blatt, H., Tracy, R., Owens, B.: Petrology: Igneous, Sedimentary, and Metamorphic. Macmillan, Basingstoke (2006)

    Google Scholar 

  • Cai, J., Wei, W., Hu, X., Wood, D.A.: Electrical conductivity models in saturated porous media: a review. Earth-Sci. Rev. 171, 419–433 (2017)

    Article  Google Scholar 

  • Chaudhuri, B., Sarkar, N.: Texture segmentation using fractal dimension. IEEE Trans. Pattern Anal. 17(1), 72–77 (1995)

    Article  Google Scholar 

  • Chen, J., Xiao, X.: Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel 129, 173–181 (2014)

    Article  Google Scholar 

  • Ding, Y., Weller, A., Zhang, Z., Kassab, M.: Fractal dimension of pore space in carbonate samples from Tushka Area (Egypt). Arab. J. Geosci. 10, 388 (2017)

    Article  Google Scholar 

  • Ferreiro, J.P., Wilson, M., Vázquez, E.V.: Multifractal description of nitrogen adsorption isotherms. Vadose Zone J. 8(1), 209–219 (2009)

    Article  Google Scholar 

  • Giesche, H.: Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact. 23(1), 9–19 (2006)

    Article  Google Scholar 

  • Hu, Q., Zhang, Y., Meng, X., et al.: Characterization of micro-nano pore networks in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China. Pet. Explor. Dev. 44(5), 720–730 (2017)

    Article  Google Scholar 

  • Kuila, U., Douglas, K., et al.: Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks. Fuel 135, 359–373 (2014)

    Article  Google Scholar 

  • Labani, M.M., Rezaee, R., Saeedi, A., Al Hinai, A.: Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: a case study from the Perth and Canning Basins, Western Australia. J. Pet. Sci. Eng. 112, 7–16 (2013)

    Article  Google Scholar 

  • Li, J., Yu, T., Liang, X., et al.: Insights on the gas permeability change in porous shale. AGER 1(2), 69–73 (2017a)

    Article  Google Scholar 

  • Li, P., Zheng, M., Bi, H., Wu, S., Wang, X.: Pore throat structure and fractal characteristics of tight oil sandstone: a case study in the Ordos Basin, China. J. Pet. Sci. Eng. 149, 665–674 (2017b)

    Article  Google Scholar 

  • Li, W., Liu, H., Song, X.: Multifractal analysis of Hg pore size distributions of tectonically deformed coals. Int. J. Coal Geol. 144, 138–152 (2015)

    Article  Google Scholar 

  • Liu, K., Ostadhassan, M., Zhou, J., et al.: Nanoscale pore structure characterization of the Bakken shale in the USA. Fuel 209, 567–578 (2017a)

    Article  Google Scholar 

  • Liu, K., Ostadhassan, M.: Multi-scale fractal analysis of pores in shale rocks. J. Appl. Geophys. 140, 1–10 (2017)

    Article  Google Scholar 

  • Liu, K., Ostadhassan, M., Gentzis, T., et al.: Characterization of geochemical properties and microstructures of the Bakken Shale in North Dakota. Int. J. Coal Geol. 190, 84–98 (2018a)

    Article  Google Scholar 

  • Liu, K., Ostadhassan, M., Zou, J., et al.: Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale. Fuel 219, 296–311 (2018b)

    Article  Google Scholar 

  • Liu, K., Ostadhassan, M., Zhou, J., et al.: Nanopore structures of isolated kerogen and bulk shale in Bakken Formation. Fuel 226, 441–453 (2018c)

    Article  Google Scholar 

  • Liu, Y., Xiong, Y., Li, Y., Peng, P.A.: Effects of oil expulsion and pressure on nanopore development in highly mature shale: evidence from a pyrolysis study of the Eocene Maoming oil shale, south China. Mar. Pet. Geol. 86, 526–536 (2017b)

    Article  Google Scholar 

  • Liu, Z., Pan, Z., Zhang, Z., Liu, P., Shang, L., Li, B.: Effect of porous media and sodium dodecyl sulphate complex system on methane hydrate formation. Energy Fuels 32(5), 5736–5749 (2018d)

    Article  Google Scholar 

  • Lopes, R., Betrouni, N.: Fractal and multifractal analysis: a review. Med. Image Anal. 13(4), 634–649 (2009)

    Article  Google Scholar 

  • Mandelbrot, B.B.: The Fractal Geometry of Nature, vol. 173. WH Freeman, New York (1983)

    Google Scholar 

  • Mandelbrot, B.B., Passoja, D.E., Paullay, A.J.: Fractal character of fracture surfaces of metals. Nature 308, 721–722 (1984)

    Article  Google Scholar 

  • Martínez, F.S.J., Martín, M.A., Caniego, F.J., Tuller, M., Guber, A., Pachepsky, Y., García-Gutiérrez, C.: Multifractal analysis of discretized X-ray CT images for the characterization of soil macropore structures. Geoderma 156(1–2), 32–42 (2010)

    Article  Google Scholar 

  • Paz Ferreiro, J., Miranda, J.G.V., Vidal Vázquez, E.: Multifractal analysis of soil porosity based on mercury injection and nitrogen adsorption. Vadose Zone J. 9(2), 325–335 (2010)

    Article  Google Scholar 

  • Peng, C., Zou, C., Yang, Y., Zhang, G., Wang, W.: Fractal analysis of high rank coal from southeast Qinshui basin by using gas adsorption and mercury porosimetry. J. Pet. Sci. Eng. 156, 235–249 (2017)

    Article  Google Scholar 

  • Posadas, A.N., Giménez, D., Bittelli, M., Vaz, C.M., Flury, M.: Multifractal characterization of soil particle-size distributions. Soil Sci. Soc. Am. J. 65(5), 1361–1367 (2001)

    Article  Google Scholar 

  • Russel, D.A., Hanson, J., Ott, E.: Dimension of strange attractors. Phys. Rev. Lett. 45(14), 1175–1178 (1980)

    Article  Google Scholar 

  • Schlömer, S., Krooss, B.M.: Experimental characterisation of the hydrocarbon sealing efficiency of cap rocks. Mar. Pet. Geol. 14(5), 565–580 (1997)

    Article  Google Scholar 

  • Schmitt, M., Fernandes, C.P., da Cunha Neto, J.A., Wolf, F.G., dos Santos, V.S.: Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques. Mar. Pet. Geol. 39(1), 138–149 (2013)

    Article  Google Scholar 

  • Thompson, A.H., Katz, A.J., Krohn, C.E.: The micro-geometry and transport properties of sandstones. Adv. Phys. 36(5), 625–694 (1987)

    Article  Google Scholar 

  • Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17(3), 273 (1921)

    Article  Google Scholar 

  • Webb, P.A.: An Introduction to the Physical Characterization of Materials by Mercury Intrusion Porosimetry with Emphasis on Reduction and Presentation of Experimental Data. Micromeritics Instrument Corp, Norcross (2001)

    Google Scholar 

  • Xia, Y., Cai, J., Wei, W., Hu, X., Wang, X., Ge, X.: A new method for calculating fractal dimensions of porous media based on pore size distribution. Fractals 26(1), 1850006 (2018)

    Article  Google Scholar 

  • Yang, Y., Zhang, W., Gao, Y., et al.: Influence of stress sensitivity on microscopic pore structure and fluid flow in porous media. J. Nat. Gas Sci. Eng. 36(Part A), 20–31 (2016)

    Article  Google Scholar 

  • Yu, S., Bo, J., Pei, S., et al.: Matrix compression and multifractal characterization for tectonically deformed coals by Hg porosimetry. Fuel 211, 661–675 (2018)

    Article  Google Scholar 

  • Zhang, B., Li, S.: Determination of the surface fractal dimension for porous media by mercury porosimetry. Ind. Eng. Chem. Res. 34(4), 1383–1386 (1995)

    Article  Google Scholar 

  • Zhang, Z., Weller, A.: Fractal dimension of pore-space geometry of an Eocene sandstone formation. Geophysics 79(6), D377–D387 (2014)

    Article  Google Scholar 

  • Zhang, P., Lu, S., Li, J., et al.: Permeability evaluation on oil-window shale based on hydraulic flow unit: a new approach. AGER 2(1), 1–13 (2017)

    Article  Google Scholar 

  • Zhou, S., Liu, D., Cai, Y., Yao, Y., Che, Y., Liu, Z.: Multi-scale fractal characterizations of lignite, subbituminous and high-volatile bituminous coals pores by mercury intrusion porosimetry. J. Nat. Gas Sci. Eng. 44, 338–350 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from China Scholarship Council (No. 201406450029). We would like to also show our appreciation to ND Core Library, Jeff Bader the director and state geologist as well as Kent Holland library technician for providing us with the samples. We thank Dr. Liu from Northeast Petroleum University for running the experiments. We also appreciate the reviewers to give their comments to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kouqi Liu or Mehdi Ostadhassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Ostadhassan, M. & Kong, L. Fractal and Multifractal Characteristics of Pore Throats in the Bakken Shale. Transp Porous Med 126, 579–598 (2019). https://doi.org/10.1007/s11242-018-1130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1130-2

Keywords

Navigation