Advertisement

Transport in Porous Media

, Volume 124, Issue 2, pp 439–462 | Cite as

Finite-Volume Discretisations for Flow in Fractured Porous Media

  • Ivar Stefansson
  • Inga Berre
  • Eirik Keilegavlen
Article

Abstract

Over the last decades, finite-volume discretisations for flow in porous media have been extended to handle situations where fractures dominate the flow. Successful discretisations have been based on the discrete fracture-matrix models to yield mass conservative methods capable of explicitly incorporating the impact of fractures and their geometry. When combined with a hybrid-dimensional formulation, two central concerns are the restrictions arising from small cell sizes at fracture intersections and the coupling between fractures and matrix. Focusing on these aspects, we demonstrate how finite-volume methods can be efficiently extended to handle fractures, providing generalisations of previous work. We address the finite-volume methods applying a general hierarchical formulation, facilitating implementation with extensive code reuse and providing a natural framework for coupling of different subdomains. Furthermore, we demonstrate how a Schur complement technique may be used to obtain a robust and versatile method for fracture intersection cell elimination. We investigate the accuracy of the proposed elimination method through a series of numerical simulations in 3D and 2D. The simulations, performed on fractured domains containing permeability heterogeneity and anisotropy, also demonstrate the flexibility of the hierarchical framework.

Keywords

Fractures Hybrid-dimensional discretisation Finite volumes 

Notes

Acknowledgements

The work has partly been funded by the Research Council of Norway through Grant Number 267908.

References

  1. Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6, 405–432 (2002).  https://doi.org/10.1023/A:1021291114475 CrossRefGoogle Scholar
  2. Ahmed, R., Edwards, M.G., Lamine, S., Huisman, B.A., Mayr, P.: Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model. J. Comput. Phys. 303, 470–497 (2015).  https://doi.org/10.1016/j.jcp.2015.10.001 CrossRefGoogle Scholar
  3. Alboin, C., Jaffré, J., Roberts, J.E., Wang, X., Serres, C.: Domain Decomposition for Some Transmission Problems in Flow in Porous Media, pp. 22–34. Springer, Berlin, Heidelberg (2000).  https://doi.org/10.1007/3-540-45467-5_2 Google Scholar
  4. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers, London (1979)Google Scholar
  5. Barenblatt, G.E., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous fluids in fissurized rocks. J. Appl. Math. Mech. 24(5), 1286–1303 (1960).  https://doi.org/10.1016/0021-8928(60)90107-6 CrossRefGoogle Scholar
  6. Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25, 861–884 (2002).  https://doi.org/10.1016/S0309-1708(02)00042-8 CrossRefGoogle Scholar
  7. Boon, W.M., Nordbotten, J.M., Yotov, I.: Robust discretization of flow in fractured porous media (2017). arXiv:1601.06977
  8. Brenner, K., Groza, M., Guichard, C., Lebeau, G., Masson, R.: Gradient discretization of hybrid dimensional Darcy flows in fractured porous media. Numer. Math. 134(3), 569–609 (2016).  https://doi.org/10.1007/s00211-015-0782-x CrossRefGoogle Scholar
  9. Dietrich, P., Helmig, R., Sauter, M., Hötzl, H., Köngeter, J., Teutsch, G.: Flow and Transport in Fractured Porous Media. Springer, Berlin, Heidelberg (2005).  https://doi.org/10.1007/b138453 CrossRefGoogle Scholar
  10. Edwards, M.G., Rogers, C.F.: Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2(4), 259–290 (1998).  https://doi.org/10.1023/A:1011510505406 CrossRefGoogle Scholar
  11. Endo, H.K., Long, J.S.: A model for investigating mechanical transport in fracture networks. Water Resour. Res. 20(10), 1390–1400 (1984).  https://doi.org/10.1029/WR020i010p01390 CrossRefGoogle Scholar
  12. Flemisch, B., Berre, I., Boon, W., Fumagalli, A., Schwenck, N., Scotti, A., Tatomir, A.: Benchmarks for single-phase flow in fractured porous media. Adv. Water Resour. 111, 239–258 (2018).  https://doi.org/10.1016/j.advwatres.2017.10.036 CrossRefGoogle Scholar
  13. Friis, H.A., Edwards, M.G., Mykkeltveit, J.: Symmetric positive definite flux-continuous full-tensor finite-volume schemes on unstructured cell-centered triangular grids. SIAM J. Sci. Comput. 31(2), 1192–1220 (2009).  https://doi.org/10.1137/070692182 CrossRefGoogle Scholar
  14. Geiger, S., & Matthäi, S. (2014). What can we learn from high-resolution numerical simulations of single- and multi-phase fluid flow in fractured outcrop analogues? In G. H. Spence, J. Redfern, R. Aguilera, T. G. Bevan, J. W. Cosgrove, G. D. Couples, & J.-M. Daniel, Advances in the Study of Fractured Reservoirs (Vol. 374, pp. 125-144). London: Geological Society of London. doi: https://doi.org/10.1144/SP374
  15. Granet, S., Fabrie, P., Lemonnier, P., Quintard, M.: A two-phase flow simulation of a fractured reservoir using a new fissure element method. J. Petrol. Sci. Eng. 32, 35–52 (2001).  https://doi.org/10.1016/S0920-4105(01)00146-2 CrossRefGoogle Scholar
  16. Hajibeygi, H., Karvounis, D., Jenny, P.: A hierarchical fracture model for the iterative multiscale finite volume method. J. Comput. Phys. 230(24), 8729–8743 (2011).  https://doi.org/10.1016/j.jcp.2011.08.021 CrossRefGoogle Scholar
  17. Jarvis, N., Jansson, P.-E., Dik, P.E., Messing, I.: Modelling water and solute transport in macroporous soil. I. Model description and sensitivity analysis. J. Soil Sci. 42, 59–70 (1991).  https://doi.org/10.1111/j.1365-2389.1991.tb00091.x CrossRefGoogle Scholar
  18. Karimi-Fard, M., Durlofsky, L.J., Aziz, K.: An efficient discrete-fracture model applicable for general-purpose reservoir simulators. Soc. Petrol. Eng. 9(2), 227–236 (2004).  https://doi.org/10.2118/88812-PA Google Scholar
  19. Keilegavlen, E., Fumagalli, A., Berge, R., Stefansson, I., Berre, I.: PorePy: An Open-Source Simulation Tool for Flow and Transport in Deformable Fractured Rocks (2017). arXiv:1712.00460
  20. Kiraly, L.: Remarques sur la simulation des failles et du réseau karstique par éléments finis dans les modèles d’écoulement. Bulletin du Centre d’Hydrogéologie 3, 155–167 (1979).  https://doi.org/10.1007/s00767-006-0140-0 Google Scholar
  21. Klausen, R.A., Radu, F., Eigestad, G.T.: Convergence of MPFA on triangulations and for Richards’ equation. Int. J. Numer. Meth. Fluids 58(12), 1327–1351 (2008).  https://doi.org/10.1002/fld.1787 CrossRefGoogle Scholar
  22. Lie, K.-A.: An Introduction to Reservoir Simulation Using MATLAB. SINTEF ICT, Oslo (2016)Google Scholar
  23. Long, J.S., Remer, J.S., Wilson, C.R., Witherspoon, P.A.: Porous media equivalents for networks of discountinuous fractures. Water Resour. Res. 18(3), 645–658 (1982).  https://doi.org/10.1029/WR018i003p00645 CrossRefGoogle Scholar
  24. Moinfar, A., Varavei, A., Sepehrnoori, K.: Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs. SPE J. 19(2), 289–303 (2014).  https://doi.org/10.2118/154246-PA CrossRefGoogle Scholar
  25. Mokhtari, M., Tutuncu, A.N., Boitnott, G.N.: Intrinsic anisotropy in fracture permeability. Interpretation 3(3), 43–53 (2015).  https://doi.org/10.1190/INT-2014-0230.1 CrossRefGoogle Scholar
  26. Monteagudo, J.E., Firoozabadi, A.: Control-volume method for numerical simulation of two-phase immiscible flow in two- and three-dimensional discrete-fractured media. Water Resour. Res. (2004).  https://doi.org/10.1029/2003WR002996 Google Scholar
  27. Nordbotten, J.M., Aavatsmark, I., Eigstad, G.T.: Monotonicity of control volume methods. Numer. Math. 106(2), 255–288 (2007).  https://doi.org/10.1007/s00211-006-0060-z CrossRefGoogle Scholar
  28. Preuss, K., Narasimhan, T.N.: A practical method for modeling fluid and heat flow in fractured porous media. Soc. Petrol. Eng. J. 25(1), 14–26 (1985).  https://doi.org/10.2118/10509-PA CrossRefGoogle Scholar
  29. Reichenberger, V., Jakobs, H., Bastian, P., Helmig, R.: A mixed-dimensional finite volume method for multiphase flow in fractured porous media. Adv. Water Resour. 29(7), 1020–1036 (2006).  https://doi.org/10.1016/j.advwatres.2005.09.001 CrossRefGoogle Scholar
  30. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock, 2nd edn. Wiley-VCH, Weinheim (2011)CrossRefGoogle Scholar
  31. Sandve, T.H., Nordbotten, J.M., Berre, I.: An efficient multi-point flux approximation for discrete fracture-matrix simulations. J. Comput. Phys. 231(9), 3784–3800 (2012).  https://doi.org/10.1016/j.jcp.2012.01.023 CrossRefGoogle Scholar
  32. Slough, K.J., Sudicky, E.A., Forsyth, P.A.: Grid refinement for modeling multiphase flow in discretely fractured porous media. Adv. Water Resour. 23(3), 261–269 (1999).  https://doi.org/10.1016/S0309-1708(99)00009-3 CrossRefGoogle Scholar
  33. Stefansson, I.: A Comparison of Two Numerical Models for Flow in Fractured Porous Media and the Impact of Fracture Intersection Cell Removal. University of Bergen, Bergen (2016). Retrieved from http://hdl.handle.net/1956/15407
  34. Tan, Y., Pan, Q., Liu, J., Wu, Y., Haque, A., Connell, L.D.: Experimental study of permeability and its anisotropy for shale fracture supported with proppant. J. Nat. Gas Sci. Eng. 44, 250–264 (2017).  https://doi.org/10.1016/j.jngse.2017.04.020 CrossRefGoogle Scholar
  35. Walton, K.M., Unger, A.J., Ioannidis, M.A., Parker, B.L.: Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation. Water Resour. Res. 54(4), 2917–2939 (2017).  https://doi.org/10.1002/2016WR020088 CrossRefGoogle Scholar
  36. Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Petrol. Eng. J. 3(3), 245–255 (1963).  https://doi.org/10.2118/426-PA CrossRefGoogle Scholar
  37. Zhang, F.: The Schur Complement and Its Applications. Springer, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BergenBergenNorway
  2. 2.Christian Michelsen ResearchBergenNorway

Personalised recommendations