Transport in Porous Media

, Volume 123, Issue 2, pp 403–420 | Cite as

Stochastic Analysis of the Gas Flow at the Gas Diffusion Layer/Electrode Interface of a High-Temperature Polymer Electrolyte Fuel Cell

  • Dieter Froning
  • Junliang Yu
  • Uwe Reimer
  • Werner Lehnert


In polymer electrolyte fuel cells of the types PEFC, DMFC and HT-PEFC, the gas diffusion layer (GDL) connects the electrodes with the feeding channels of the bipolar plate. The GDL is typically composed of materials based on carbon fibers, e.g., paper, woven or non-woven textiles. Efficient fuel cell operation requires that the electrodes are sufficiently supplied by gaseous fluids from the channels. Also, reaction products must be transported away from the electrodes. The GDL also has to provide electronic contact to the bipolar plates, but its major task is the mass transport of fluids. The gas transport in through-plane direction is simulated in the porous structure of the GDL, represented by stochastic geometries equivalent to the real structure. In order to support multi-scale simulation, effective properties can be calculated from these mesoscale simulation results to provide model parameters for continuum approaches in cell-scale simulations. In this paper, the resulting gas flow is analyzed with statistical methods with the focus on the interface between GDL and electrode. This approach provides the opportunity to detect quantitative relationships between functionality and microstructure and to design virtual GDL materials with improved transport properties. The evaluation of the interface with stochastic methods provides substantiated properties suitable for connecting regions representing fuel cell components of different spatial scales.


HT-PEFC GDL/electrode interface Lattice Boltzmann Stochastic modeling Bridging multiple scales 



This research is partly funded by the Chinese Scholarship Council (CSC), Grant 201408080011. The transport simulations are running on hardware of the Jülich Supercomputing Centre, Grant JIEK30.


  1. Adler, J.: R in a Nutshell, 2nd edn. O’Reilly, Sebastopol (2012)Google Scholar
  2. Andersson, M., Beale, S.B., Espinoza, M., Wu, Z., Lehnert, W.: A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells. Appl. Energy 180, 757–778 (2016)CrossRefGoogle Scholar
  3. Arlt, T., Maier, W., Tötzke, C., Wannek, C., Markötter, H., Wieder, F., Banhart, J., Lehnert, W., Manke, I.: Synchrotron X-ray radioscopic in situ study of high-temperature polymer electrolyte fuel cells—effect of operation conditions on structure of membrane. J. Power Sources 246, 290–298 (2014)CrossRefGoogle Scholar
  4. Bodner, M., Hochenauer, C., Hacker, V.: Effect of pinhole location on degradation in polymer electrolyte fuel cells. J. Power Sources 295(1), 336–348 (2015)CrossRefGoogle Scholar
  5. Brinkmann, J.P., Froning, D., Reimer, U., Schmidt, V., Lehnert, W., Stolten, D.: 3D modeling of one and two component gas flow in fibrous microstructures in fuel cells by using the lattice Boltzmann method. ECS Trans. 50(2), 207–219 (2012)CrossRefGoogle Scholar
  6. Cao, Q., Beale, S.B., Reimer, U., Froning, D., Lehnert, W.: The importance of diffusion mechanisms in high temperature polymer electrolyte fuel cells. ECS Trans. 69(17), 1089–1103 (2015). CrossRefGoogle Scholar
  7. Chandan, A., Hattenberger, M., El-kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram, A., Bujalski, W.: High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J. Power Sources 231, 264–278 (2013)CrossRefGoogle Scholar
  8. Chippar, P., Ju, H.: Numeric modeling and investigation of gas crossover effects in high temperature proton exchange membrane (PEM) fuel cells. Int. J. Hydrog. Energy 38, 7704–7714 (2013)CrossRefGoogle Scholar
  9. Eberhardt, S.H., Toulec, M., Marone, F., Stampanoni, M., Büchi, F., Schmidt, T.J.: Dynamic operation of HT-PEFC: in-operando imaging of phosphoric acid profiles and (re)distribution. J. Electrochem. Soc. 162(3), F310–F316 (2015)CrossRefGoogle Scholar
  10. Eller, J., Lamibrac, A., Marone, F., Büchi, F.N.: Influence of binder porosity on GDL gas phase transport. ECS Meet. Abstr. 230(4), 2747–2747 (2016)Google Scholar
  11. Engl, T., Gubler, L., Schmidt, J.: Think different! Carbon corrosion mitigation strategy in high temperature PEFC: a rapid aging study. J. Electrochem. Soc. 162(3), F291–F297 (2015)CrossRefGoogle Scholar
  12. Froning, D., Brinkmann, J., Reimer, U., Schmidt, V., Lehnert, W., Stolten, D.: 3D analysis, modeling and simulation of transport processes in compressed fibrous microstructures, using the Lattice Boltzmann method. Electrochim. Acta 110, 325–334 (2013). CrossRefGoogle Scholar
  13. Froning, D., Gaiselmann, G., Reimer, U., Brinkmann, J., Schmidt, V., Lehnert, W.: Stochastic aspects of mass transport in gas diffusion layers. Transp. Porous Media 103(3), 469–495 (2014). CrossRefGoogle Scholar
  14. Froning, D., Yu, J., Gaiselmann, G., Reimer, U., Manke, I., Schmidt, V., Lehnert, W.: Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells. J. Power Sources 318, 26–34 (2016). CrossRefGoogle Scholar
  15. Gao, Y.: Using MRT lattice Boltzmann method to simulate gas flow in simplified catalyst layer for different inlet-outlet pressure ratio. Int. J. Heat Mass Transf. 88, 122–132 (2015). CrossRefGoogle Scholar
  16. Gao, Y., Zhang, X.: Geometrical structures of catalyst layer and their impact on oxygen reduction in proton exchange membrane fuel cell. Electrochim. Acta 218, 101–109 (2016)CrossRefGoogle Scholar
  17. Hänel, D.: Molekulare Gasdynamik. Springer, Berlin (2004)Google Scholar
  18. Hedderich, J., Sachs, L.: Angewandte Statistik, 14th edn. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. Hinebaugh, J., Gostick, J., Bazylak, A.: Stochastic modeling of polymer electrolyte membrane fuel cell gas diffusion layers—part 2: a comprehensive substrate model with pore size distribution and heterogeneity effects. Int. J. Hydrog. Energy 42(24), 15872–15886 (2017).
  20. Horgue, P., Soulaine, C., Franc, J., Guibert, R., Debenest, G.: An open-source toolbox for multiphase flow in porous media. Comput. Phys. Commun. 187, 217–226 (2015). CrossRefGoogle Scholar
  21. Hu, M., Cao, G.: Research on the long-term stability of a PEMFC stack: analysis of pinhole evolution. Int. J. Hydrog. Energy 39, 7940–7954 (2014)CrossRefGoogle Scholar
  22. Inoue, G., Kawase, M.: Effect of porous structure of catalyst layer on effective oxygen diffusion coefficient in polymer electrolyte fuel cell. J. Power Sources 327, 1–10 (2016)CrossRefGoogle Scholar
  23. Jung, A., Kong, I.M., Yun, C.Y., Kim, M.S.: Characteristics of hydrogen crossover through pinhole in polymer electrolyte membrane fuel cells. J. Membr. Sci. 523, 138–143 (2017)CrossRefGoogle Scholar
  24. Kazmouz, S.J., Giusti, A., Mastorakos, E.: Numerical simulation of shale gas flow in three-dimensional fractured porous media. J. Unconv. Oil Gas Resour. 16, 90–112 (2016). CrossRefGoogle Scholar
  25. Koponen, A., Kataja, M., Timonen, J.: Tortuous flow in porous media. Phys. Rev. E 54(1), 406–410 (1996)CrossRefGoogle Scholar
  26. Kreitmeier, S., Schuler, G.A., Wokaun, A., Büchi, F.N.: Investigation of membrane degradation in polymer electrolyte fuel cells using local gas permeation analysis. J. Power Sources 212, 139–147 (2012)CrossRefGoogle Scholar
  27. Kulikovsky, A.A.: The effect of non-uniform aging of a polymer electrolyte fuel cell on the polarization curve: a modeling study. Electrochim. Acta 123, 542–550 (2014)CrossRefGoogle Scholar
  28. Kulikovsky, A.A., Berg, P.: Analytical description of a dead spot in a PEM fuel cell anode. ECS Electrochem. Lett. 2(9), F64–F67 (2013)CrossRefGoogle Scholar
  29. Kvesić, M., Reimer, U., Froning, D., Lüke, L., Lehnert, W., Stolten, D.: 3D modeling of a 200 cm\({}^2\) HT-PEFC short stack. Int. J. Hydrog. Energy 37, 2430–2439 (2012a)CrossRefGoogle Scholar
  30. Kvesić, M., Reimer, U., Froning, D., Lüke, L., Lehnert, W., Stolten, D.: 3D modeling of an HT-PEFC stack using reformate gas. Int. J. Hydrog. Energy 37, 12438–12450 (2012b)CrossRefGoogle Scholar
  31. Mangal, P., Pant, L.M., Carrigy, N., Dumontier, M., Zingan, V., Mitra, S., Secanell, M.: Experimental study of mass transport in PEMFCs: through plane permeability and molecular diffusivity in GDLs. Electrochim. Acta 167, 160–171 (2015)CrossRefGoogle Scholar
  32. Molaeimanesh, G., Googarchin, H.S., Moqaddam, A.Q.: Lattice Boltzmann simulation of proton exchange membrane fuel cells—a review on opportunities and challenges. Int. J. Hydrog. Energy 41(47), 22221–22245 (2016). CrossRefGoogle Scholar
  33. Nabovati, A., Hinebaugh, J., Bazylak, A., Amon, C.H.: Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells. J. Power Sources 248, 83–90 (2014)CrossRefGoogle Scholar
  34. Paraview – Open Source Scientific Visualization. (2009)
  35. Poornesh, K.K., Sohn, Y.J., Park, G.G., Yan, T.H.: Gas-diffusion layer’s structural anisotropy induced localized instability of nafion membrane in polymer electrolyte fuel cell. Int. J. Hydrog. Energy 37, 15339–15349 (2012)CrossRefGoogle Scholar
  36. R Core Team: R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2013).
  37. Rashapov, R.R., Gostick, J.T.: In-plane effective diffusivity in PEMFC gas diffusion layers. Transp. Porous Media 115(3), 411–433 (2016). CrossRefGoogle Scholar
  38. Reimer, U., Schumacher, B., Lehnert, W.: Accelerated degradation of high-temperature polymer electrolyte fuel cells: discussion and empirical modeling. J. Electrochem. Soc. 162(1), F153–F164 (2015). CrossRefGoogle Scholar
  39. Reshetenko, T.V., Bender, G., Bethune, K., Rocheleau, R.: Application of a segmented cell setup to detect pinhole and catalyst loading defects in proton exchange membrane fuel cells. Electrochim. Acta 76, 16–25 (2012)CrossRefGoogle Scholar
  40. Reshetenko, T.V., St-Piere, J., Rocheleau, R.: Effects of local gas diffusion layer gas permeability variations on spatial proton exchange membrane fuel cells performance. J. Power Sources 241, 597–607 (2013)CrossRefGoogle Scholar
  41. Rosén, T., Eller, J., Kang, J., Prasianakis, N.I., Mantzaras, J., Büchi, F.N.: Saturation dependent effective transport properties of PEFC gas diffusion layers. J. Electrochem. Soc. 159(9), F536–F544 (2012)CrossRefGoogle Scholar
  42. Safi, M.A., Prasianakis, N.I., Mantzaras, J., Lamibrac, A., Büchi, F.N.: Experimental and pore-level numerical investigation of water evaporation in gas diffusion layers of polymer electrolyte fuel cells. Int. J. Heat Mass Transf. 115, 238–249 (2017)CrossRefGoogle Scholar
  43. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock. Wiley VCH Verlag GmbH, Weinheim (2011).
  44. Salomov, U.R., Chiavazzo, E., Asinari, P.: Pore-scale modeling of fluid flow through gas diffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM) fuel cells. Comput. Math. Appl. 67, 393–411 (2014)CrossRefGoogle Scholar
  45. Shojaeefard, M., Molaeimanesh, G., Nazemian, M., Moqaddari, M.: A review on microstructure reconstruction of PEM fuel cells porous electrodes for pore scale simulation. Int. J. Hydrog. Energy 41(44), 20276–20293 (2016). CrossRefGoogle Scholar
  46. Sousa, T., Mamlouk, M., Scott, K., Rangel, C.M.: Three dimensional model of a high temperature PEMFC. Study of the flow field effect on performance. Fuel Cells 12(4), 566–576 (2012)CrossRefGoogle Scholar
  47. Succi, S.: The Lattice Boltzmann Equation. Oxford University Press, Oxford (2001)Google Scholar
  48. Taira, H., Liu, H.: In-situ measurements of GDL effective permeability and under-land cross-flow in a PEM fuel cell. Int. J. Hydrog. Energy 37, 13725–13730 (2012)CrossRefGoogle Scholar
  49. Tamayol, A., McGregor, F., Bahrami, M.: Single phase through-plane permeability of carbon paper gas diffusion layers. J. Power Sources 204, 94–99 (2012)CrossRefGoogle Scholar
  50. Thiedmann, R., Fleischer, F., Hartnig, C., Lehnert, W., Schmidt, V.: Stochastic 3D modeling of the GDL structure in PEMFCs based on thin section detection. J. Electrochem. Soc. 155(4), B391–B399 (2008)CrossRefGoogle Scholar
  51. Tomadakis, M.M., Robertson, T.J.: Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results. J. Compos. Mater. 39(2), 163–188 (2005)CrossRefGoogle Scholar
  52. Úbeda, D., Cañizares, P., Ferreira-Aparicio, P., Chaparro, A.M., Lobato, J., Rodrigo, M.A.: Life test of a high temperature PEM fuel cell prepared by electrospray. Int. J. Hydrog. Energy 41, 20294–20304 (2016)CrossRefGoogle Scholar
  53. Úbeda, D., Cañizares, P., Rodrigo, M.A., Pinar, F.J., Lobato, J.: Durability study of HTPEMFC through current distribution measurements and the application of a model. Int. J. Hydrog. Energy 39, 21678–21687 (2014)CrossRefGoogle Scholar
  54. van Doormaal, M.A., Pharoah, J.G.: Determination of permeability in fibrous porous media using the lattice Boltzmann method with application to PEM fuel cells. Int. J. Numer. Methods Fluids 59, 75–89 (2009)CrossRefGoogle Scholar
  55. Weber, A.Z., Borup, R.L., Darling, R.M., Das, P.K., Dursch, T.J., Gu, W., Harvey, D., Kusoglu, A., Litster, S., Mench, M.M., Mukundan, R., Owejan, J.P., Pharoah, J.G., Secanell, M., Zenyuk, I.V.: A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J. Electrochem. Soc. 161(12), F1254–F1299 (2014)CrossRefGoogle Scholar
  56. Wolf-Gladrow, D.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models. Springer, Berlin (2000)CrossRefGoogle Scholar
  57. Wörner, M.: Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12, 841–886 (2012)CrossRefGoogle Scholar
  58. Ye, D.H., Gauthier, E., Cheah, M.J., Benziger, J., Pan, M.: The effect of gas diffusion layer compression on gas bypass and water slug motion in parallel gas flow channels. AIChE J. 61(1), 355–367 (2015)CrossRefGoogle Scholar
  59. Zamel, N., Li, X.: Effective transport properties for polymer electrolyte membrane fuel cells—with a focus on the gas diffusion layer. Prog. Energy Combust. Sci. 39, 111–146 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Energy and Climate Research, IEK-3: Electrochemical Process EngineeringForschungszentrum Jülich GmbHJülichGermany
  2. 2.Modeling in Electrochemical Process EngineeringRWTH Aachen UniversityAachenGermany
  3. 3.JARA-HPCJülichGermany

Personalised recommendations