Transport in Porous Media

, Volume 122, Issue 3, pp 745–759

Numerical Simulations of the Migration of Fine Particles Through Porous Media

Article

Abstract

The migration of fine particles (or fines) in an oil formation may cause its damage and decrease the well production rate, as several experimental and modeling studies have shown. The major challenge in the description of fines transport is the prediction of the location where particles are blocked. Classical mathematical models consider the fines as a solute and neglect the mechanism that couples fines transport and the fluid flow, without capturing therefore the single particle motion and blockage. Recent observations carried out using microfluidic systems to observe fines migration have shown limitations on tracing particles and on the analysis of the forces acting, e.g., on a single particle. This could be overcome with simulations using a new numerical approach. In this paper, a numerical model comprising lattice Boltzmann method, immersed boundary method, and discrete element method is presented. The model was developed to study fines migration in porous media at the pore scale. By considering the two-way coupling between the liquid and the solid phase (i.e., the particle), the model is able to capture particle motion in the porous medium and the effect of the particle transport on the fluid flow. Simulation results show that the fines migration is determined by the size of the particles as well as by the structure of the porous medium. Particle blockage alters the preferential flow path and decreases the permeability of the porous medium while increasing the swept area and the oil recovery. Moreover, simulations show that the increase of the pressure drop can displace blocked particles in the porous medium throats and allow restoring the initial permeability.

Keywords

Direct numerical simulation Fines migration Fluid–solid two-phase flow Lattice Boltzmann method Pore-scale modeling

List of symbols

$$\alpha$$

The direction

$$\varvec{e_i}$$

The discrete velocity vector

$$\varvec{F}_{\mathrm{f}\text {--}\mathrm{p}}$$

Hydrodynamic force from the fluid to the particle

$$\varvec{F}_{\mathrm{p}\text {--}\mathrm{p}}$$

Collision force between particles

$$\varvec{F}_{\mathrm{w}\text {--}\mathrm{p}}$$

Collision force between a particle and the wall

$$\varvec{T}_{\mathrm{f}\text {--}\mathrm{p}}$$

Torque acting on the particle

$$\varvec{v_\mathrm{p}}$$

The migration velocity of the particle

$$\varvec{w_\mathrm{p}}$$

The angular velocity of the particle

$$\varvec{x}$$

The grid node position

$$\delta _\mathrm{t}$$

The time step

$$\omega _i$$

The weight coefficient

$$\rho _\mathrm{f}$$

The density of fluid

$$\rho _\mathrm{s}$$

The density of solid phase

$$\tau$$

The relaxation time

$$\zeta$$

The safe zone

$$c_{s}$$

The lattice sound speed

$$c_{i}$$

The force scale

D

The Dirac delta function

$$E_\mathrm{p}$$

The stiffness parameter

$$F_{\alpha }$$

The external force term

$$f_{\alpha }$$

The distribution function

$$f_{\alpha }^{(\mathrm{eq})}$$

The equilibrium distribution function

g

The gravity acceleration

$$g(\varvec{x},t)$$

The force density

$$M_{i\mathrm{p}}$$

The mass of the ith-particle

$$r_i$$

Notes

Acknowledgements

This work is supported by the Innovation & Entrepreneurial Fellowship Program at Stevens Institute of Technology and the ACS-PRF fund under the Grant Number PRF# 57739-DNI9. The authors would like to thank Dr. Xiaodong Niu at Shantou University (China) for his technical support during the coding of the model presented in this paper. The authors thank the reviewers for their useful comments that allow to improve the quality of the manuscript.

Supplementary material

11242_2018_1024_MOESM1_ESM.pdf (17.1 mb)
Supplementary material 1 (pdf 17466 KB)

References

1. Ahfir, N.D., Hammadi, A., Alem, A., Wang, H., Le Bras, G., Ouahbi, T.: Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles. J. Environ. Sci. 53, 161 (2017)
2. Bedrikovetsky, P.G., Siqueira, F.D., Furtado, C.J.A., Serra de Souza, A.L., et al.: In: Quantitative theory for fines migration and formation damage. In: SPE International Symposium and Exhibition on Formation Damage Control. Society of Petroleum Engineers (2010)Google Scholar
3. Bennacer, L., Ahfir, N.D., Alem, A., Wang, H.: Coupled effects of ionic strength, particle size, and flow velocity on transport and deposition of suspended particles in saturated porous media. Transp. Porous Media 118, 251–269 (2017)
4. Boek, E.S., Venturoli, M.: Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl. 59(7), 2305 (2010)
5. Borazjani, S., Behr, A., Genolet, L., Van Der Net, A., Bedrikovetsky, P.: Effects of fines migration on low-salinity waterflooding: analytical modelling. Transp. Porous Media 116(1), 213 (2017)
6. Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13(11), 3452 (2001)
7. Burya, Y.G., Yudin, I.K., Dechabo, V.A., Kosov, V.I., Anisimov, M.A.: Light-scattering study of petroleum asphaltene aggregation. Appl. Opt. 40(24), 4028 (2001)
8. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329 (1998)
9. Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., Yakhot, V.: Extended Boltzmann kinetic equation for turbulent flows. Science 301(5633), 633 (2003)
10. Chen, L., Zhang, L., Kang, Q., Viswanathan, H.S., Yao, J., Tao, W.: Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity. Sci. Rep. 5, 8089 (2015)
11. Civan, F.: Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport. Transp. Porous Media 85(1), 233 (2010)
12. Civan, F.: Reservoir Formation Damage. Gulf Professional Publishing, Oxford (2015)Google Scholar
13. Civan, F., et al.: European Formation Damage Conference. In: European Formation Damage Conference. Society of Petroleum Engineers (2007)Google Scholar
14. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47 (1979)
15. Fathi, E., Akkutlu, I.Y., et al.: Lattice Boltzmann method for simulation of shale gas transport in kerogen. SPE J. 18(01), 27 (2012)
16. Feia, S., Dupla, J.C., Ghabezloo, S., Sulem, J., Canou, J., Onaisi, A., Lescanne, H., Aubry, E.: Experimental investigation of particle suspension injection and permeability impairment in porous media. Geomech. Energy Environ. 3, 24 (2015)
17. Feng, Z.G., Michaelides, E.E.: Proteus: a direct forcing method in the simulations of particulate flows. J. Comput. Phys. 202(1), 20 (2005)
18. Galal, S.K., Elgibaly, A.A., Elsayed, S.K.: Formation damage due to fines migration and its remedial methods. Egypt. J. Pet. 25(4), 515 (2016)
19. Glowinski, R., Pan, T., Hesla, T., Joseph, D., Periaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169(2), 363 (2001)
20. Guo, Z., Zhao, T.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66(3), 036304 (2002)
21. Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65(4), 046308 (2002a)Google Scholar
22. Guo, Z., Zheng, C., Shi, B.: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 11(4), 366 (2002b)Google Scholar
23. Guo, Z., Hussain, F., Cinar, Y.: Permeability variation associated with fines production from anthracite coal during water injection. Int. J. Coal Geol. 147, 46 (2015)
24. He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88(3), 927 (1997)
25. Hussain, F., Zeinijahromi, A., Bedrikovetsky, P., Badalyan, A., Carageorgos, T., Cinar, Y.: An experimental study of improved oil recovery through fines-assisted waterflooding. J. Pet. Sci. Eng. 109, 187 (2013)
26. Jung, J., Cao, S.C., Shin, Y.H., Al-Raoush, R.I., Alshibli, K., Choi, J.W.: A microfluidic pore model to study the migration of fine particles in single-phase and multi-phase flows in porous media. Microsyst. Technol. 24, 1071–1080 (2018)
27. Khilar, K.C., Fogler, H.S.: Migrations of Fines in Porous Media, vol. 12. Springer, Berlin (1998)Google Scholar
28. Ladd, A.J.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285 (1994)
29. Li, Q., Luo, K., Kang, Q., He, Y., Chen, Q., Liu, Q.: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62 (2016)
30. Nguyen, T.K.P., Zeinijahromi, A., Bedrikovetsky, P.: Fines-migration-assisted improved gas recovery during gas field depletion. J. Pet. Sci. Eng. 109, 26 (2013)
31. Niu, X., Shu, C., Chew, Y., Peng, Y.: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys. Lett. A 354(3), 173 (2006)
32. Okabe, H., Blunt, M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E 70(6), 066135 (2004)
33. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220 (1977)
34. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479 (2002)
35. Qian, Y., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17(6), 479 (1992)
36. Russell, T., Pham, D., Neishaboor, M.T., Badalyan, A., Behr, A., Genolet, L., Kowollik, P., Zeinijahromi, A., Bedrikovetsky, P.: Effects of kaolinite in rocks on fines migration. J. Nat. Gas Sci. Eng. 45, 243–255 (2017)
37. Sen, T.K., Khilar, K.C.: Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci. 119(2), 71 (2006)Google Scholar
38. Sharma, M., Yortsos, Y., Handy, L., et al.: In: Release and deposition of clays in sandstones. In: SPE Oilfield and Geothermal Chemistry Symposium. Society of Petroleum Engineers (1985)Google Scholar
39. Song, W., Kovscek, A.R.: Direct visualization of pore-scale fines migration and formation damage during low-salinity waterflooding. J. Nat. Gas Sci. Eng. 34, 1276 (2016)
40. Tufenkji, N.: Colloid and microbe migration in granular environments: a discussion of modelling methods. In: Frimmel, F.H., Von Der Kammer, F., Flemming, H.C. (eds.) Colloidal Transport in Porous Media, pp. 119–142. Springer, Berlin (2007)
41. Wang, Y.: The picture of 2-D porous medium. http://www.opencimulation.org/?p=1020. Accessed 04-08-2017 (2017)
42. You, Z., Bedrikovetsky, P., Badalyan, A., Hand, M.: Particle mobilization in porous media: temperature effects on competing electrostatic and drag forces. Geophys. Res. Lett. 42(8), 2852 (2015)
43. You, Z., Yang, Y., Badalyan, A., Bedrikovetsky, P., Hand, M.: Mathematical modelling of fines migration in geothermal reservoirs. Geothermics 59, 123 (2016)
44. Zeinijahromi, A., Nguyen, T.K.P., Bedrikovetsky, P.: Mathematical model for fines-migration-assisted waterflooding with induced formation damage. SPE J. 18(03), 518 (2013)
45. Zhang, H., Tan, Y., Shu, S., Niu, X., Trias, F.X., Yang, D., Li, H., Sheng, Y.: Numerical investigation on the role of discrete element method in combined LBM–IBM–DEM modeling. Comput. Fluids 94, 37 (2014)
46. Zhang, L., Kang, Q., Yao, J., Gao, Y., Sun, Z., Liu, H., Valocchi, A.J.: Pore scale simulation of liquid and gas two-phase flow based on digital core technology. Sci. China Technol. Sci. 58(8), 1375 (2015)
47. Zhong, W., Yu, A., Liu, X., Tong, Z., Zhang, H.: DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108 (2016)
48. Zhu, L., He, G., Wang, S., Miller, L., Zhang, X., You, Q., Fang, S.: An immersed boundary method based on the lattice Boltzmann approach in three dimensions, with application. Comput. Math. Appl. 61(12), 3506 (2011)
49. Zhu, S.Y., Peng, X.L., Du, Z.M., Wang, C.W., Deng, P., Mo, F., Lei, Y., Wang, M.: Modeling of coal fine migration during CBM production in high-rank coal. Transp. Porous Media 118(1), 65 (2017)