Transport in Porous Media

, Volume 122, Issue 3, pp 633–645 | Cite as

Zone-Integrated Double-Constraint Methodology for Calibration of Hydraulic Conductivities in Grid Cell Clusters of Groundwater Flow Models

  • M. El-Rawy
  • F. De Smedt
  • W. Zijl


This paper deals with the double-constraint methodology for calibration of steady-state groundwater flow models. The methodology is based on updating the hydraulic conductivity of the model domain by comparing the results of two forward groundwater flow models: a model in which known fluxes are specified as boundary conditions and a model in which known heads are specified as boundary conditions. A new zone-integrated double-constraint approach is presented by partitioning the model domain in zones with presumed constant hydraulic conductivity (soft data), and the double-constraint methodology is reformulated accordingly. The feasibility of the method is illustrated by a practical case study involving a numerical steady-state groundwater flow model with about 3 million grid blocks, subdivided into four zones corresponding to the major hydrogeological formations. The results of the zone-integrated double-constraint method for estimating the horizontal and vertical hydraulic conductivities of the zones compare favourably with a classical model calibration based on minimisation of the differences between calculated and measured heads, while the double-constraint method proves to be more robust and computationally less cumbersome.


Double-constraint method Inverse problem Parameter estimation Hydraulic conductivity Groundwater modelling 



The first author would like to thank the Egyptian Ministry of High Education and Cultural Affairs and the Missions Sector for providing a postdoctoral scholarship at the Vrije Universiteit Brussel, Brussels, Belgium. He also acknowledges the support and encouragement from the Department of Civil Engineering, Faculty of Engineering, Minia University, and the Department of Hydrology and Hydraulic Engineering, Faculty of Engineering, Vrije Universiteit Brussel.


  1. Anderson, M.P., Woessner, W.W., Hunt, R.J.: Applied Groundwater Modeling: Simulation of Flow and Advective Transport, 2nd edn. Academic Press, San Diego (2015)Google Scholar
  2. Batelaan, O., De Smedt, F.: GIS-based recharge estimation by coupling surface-subsurface water balances. J. Hydrol. 337(3–4), 337–355 (2007)CrossRefGoogle Scholar
  3. Batelaan, O., El-Rawy, M., Schneidewind, U., De Becker, P., Herr, C.: Doorrekenen van maatregelen voor herstel van vochtige heidevegetaties op het Schietveld van Houthalen-Helchteren via grondwatermodellering. Vrije Universiteit Brussel, Brussels (2012)Google Scholar
  4. Brouwer, G.K., Fokker, P.A., Wilschut, F., Zijl, W.: A direct inverse model to determine permeability fields from pressure and flow rate measurement. Math. Geosci. 40(8), 907–920 (2008)CrossRefGoogle Scholar
  5. Calderón, A.P.: On an inverse boundary value problem, seminar on numerical analysis and its applications to continuum physics. Soc. Brasil. Mat., 65–73 (Rio de Janeiro 1980). Also see the reprint: Calderón, A.P.: On an inverse boundary value problem. Comput. Appl. Math 25(2–3), 133–138 (2006)Google Scholar
  6. Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., Slooten, L.J.: Inverse problem in hydrogeology. Hydrogeol. J. 13, 206–222 (2005)CrossRefGoogle Scholar
  7. El-Rawy, M.A.: Calibration of hydraulic conductivities in groundwater flow models using the double constraint method and the Kalman Filter. PhD thesis Vrije Universiteit Brussel, Brussels, Belgium (2013)Google Scholar
  8. El-Rawy, M.A., Batelaan, O., Zijl, W.: Simple hydraulic conductivity estimation by the Kalman filtered double constraint method. Groundwater 53(3), 401–413 (2015). CrossRefGoogle Scholar
  9. El-Rawy, M., De Smedt, F., Batelaan, O., Schneidewind, U., Huysmans, M., Zijl, W.: Hydrodynamics of porous formations: simple indices for calibration and identification of spatio-temporal scales. Mar. Pet. Geol 78, 690–700 (2016)CrossRefGoogle Scholar
  10. Gupta, V.K., Sorooshian, S., Yapo, P.O.: Towards improved calibration of hydrologic model: multiple and noncommensurable measures of information. Water Resour. Res. 34, 751–763 (1998)CrossRefGoogle Scholar
  11. Harbaugh, A.W.: MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model—the Ground-Water Flow Process, U.S. Geological Techniques and Methods 6-A16, U.S. Geological Survey, Reston, VA (2005)Google Scholar
  12. Hill, M.C., Tiedeman, C.R.: Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty. Wiley, New York (2007)CrossRefGoogle Scholar
  13. Kohn, R.V., Vogelius, M.: Relaxation of a variational method for impedance computed tomography. Commun. Pure Appl. Math. 40, 745–777 (1987)CrossRefGoogle Scholar
  14. Kohn, R.V., McKenney, A.: Numerical implementation of a variational method for electrical impedance tomography. Inverse Probl. 6, 389–414 (1990)CrossRefGoogle Scholar
  15. Meyus, Y., Adyns, D., Severyns, J., Batelaan, O., De Smedt, F.: Ontwikkeling van regionale modellen ten behoeve van het Vlaams Grondwater Model (VGM) in GMS/MODFLOW—Het Centraal Kempisch model—Deelrapport 1: Basisgegevens en conceptueel model. Vrije Universiteit Brussel, Vakgroep Hydrologie en Waterbouwkunde, Brussel (2004)Google Scholar
  16. Meyus, Y., Cools, J., Adyns, D., Zeleke, S.Y., Woldeamlak, S.T., Batelaan, O., De Smedt, F.: Vlaams Grondwater Model: Hydrogeologische detailstudie van de ondergrond in Vlaanderen. Vrije Universiteit Brussel, Vakgroep Hydrologie en Waterbouwkunde, Brussel (2005)Google Scholar
  17. Nagels, K., Schneidewind, U., El-Rawy, M., Batelaan, O., De Beker, P.: Hydrology and ecology: how Natura 2000 and military use can match. Ecol. Quest 21, 79–85 (2015)CrossRefGoogle Scholar
  18. Poeter, E.P., Hill, M.C.: Inverse models: a necessary next step in ground-water flow modeling. Groundwater 35, 250–260 (1997)CrossRefGoogle Scholar
  19. Severyns, J., Batelaan, O., De Smedt, F.: Ontwikkeling van regionale modellen ten behoeve van het Vlaams Grondwater Model (VGM) in GMS/MODFLOW—Het Maasmodel. Deelrapport 1: Basisgegevens en conceptueel model. Vrije Universiteit Brussel, Vakgroep Hydrologie en Waterbouwkunde, Brussel, Belgium (2004)Google Scholar
  20. Sun, N.-Z.: Inverse Problems in Groundwater Modeling. Kluwer, Dordrecht (1994)Google Scholar
  21. Trykozko, A., Brouwer, G.K., Zijl, W.: Downscaling: a complement to homogenization. Int. J. Numer. Anal. Model. 5, 157–170 (2008)Google Scholar
  22. Uhlmann, G.: Electrical impedance tomography and Calderón’s problem. Inverse Probl. 25(12), 123011 (2009)CrossRefGoogle Scholar
  23. VMM: Grondwater in Vlaanderen: het Centraal Kempisch Systeem. Vlaamse Milieumaatschappij, Aalst (2008a)Google Scholar
  24. VMM: Grondwater in Vlaanderen: het Maassysteem. Vlaamse Milieumaatschappij, Aalst (2008b)Google Scholar
  25. Wexler, A.: Electrical impedance imaging in two and three dimensions. Clin. Phys. Physiol. Meas. 9, 29–33 (1988)CrossRefGoogle Scholar
  26. Wexler, A., Fry, B., Neuman, M.R.: Impedance-computed tomography algorithm and system. Appl. Opt. 24, 3985–3992 (1985)CrossRefGoogle Scholar
  27. Winston, R.B.: ModelMuse: A Graphical User Interface for MODFLOW–2005 and PHAST, Techniques and Methods—6-A29. U.S. Geological Survey, Reston, VA (2009)Google Scholar
  28. Yeh, W.W.: Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Resour. Res. 22, 95–108 (1986)CrossRefGoogle Scholar
  29. Yorkey, T.J., Webster, J.G.: A comparison of impedance tomographic reconstruction algorithms. Clin. Phys. Physiol. Meas. 8, 55–62 (1987)CrossRefGoogle Scholar
  30. Yorkey, T.J., Webster, J.G., Tompkins, W.J.: Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans. Biomed. Eng. 34, 843–852 (1987)CrossRefGoogle Scholar
  31. Zhou, H., Gómez-Hernández, J.J., Li, L.: Inverse methods in hydrogeology: Evolution and recent trends. Adv. Water Resour. 63, 22–37 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil Engineering, Faculty of EngineeringMinia UniversityMiniaEgypt
  2. 2.Department of Hydrology and Hydraulic EngineeringVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations