Advertisement

Transport in Porous Media

, Volume 125, Issue 1, pp 105–125 | Cite as

Statistical Reconstruction of Microstructures Using Entropic Descriptors

  • Ryszard PiaseckiEmail author
  • Wiesław Olchawa
  • Daniel Fra̧czek
  • Ryszard Wiśniowski
Article

Abstract

We report a multiscale approach of broad applicability to stochastic reconstruction of multiphase materials, including porous ones. The approach devised uses an optimization method, such as the simulated annealing (SA) and the so-called entropic descriptors (EDs). For a binary pattern, they quantify spatial inhomogeneity or statistical complexity at discrete length scales. The EDs extract dissimilar structural information to that given by two-point correlation functions (CFs). Within the SA, we use an appropriate cost function consisting of EDs or comprised of EDs and CFs. It was found that the stochastic reconstruction is computationally efficient when we begin with a preliminary synthetic configuration having in part desirable features. Another option is low-cost approximate reconstructing of the entire multiphase medium beyond the SA technique. The information included in the target ED-curve was utilized for this purpose. For a given volume fraction, the low-cost trial microstructures can be generated in two ways. In the first one, applied to ceramics and carbonate samples, the interpenetrating spheres generate a number of trial configurations. In the second one, with phase-EDs, here used to the sandstone sample, the overlapping superspheres do it. Both methods use a radius determined from the EDs-linked two-exponent power-law. However, the supersphere deformation parameter allows controlling of the spatial inhomogeneity of prototypical microstructures. At last, even for a hypothetical ED-curve (under reasonable assumptions), the specific microstructure can be found, if it is realizable for a given volume fraction. In general, the EDs-based methods offer a compromise between computational efficiency and the accuracy of reconstructions.

Keywords

Entropic descriptors Microstructure reconstruction Multiscale modelling Porous materials 

References

  1. Bodla, K.K., Garimella, S.V., Murthy, J.Y.: 3D reconstruction and design of porous media from thin sections. Int. J. Heat Mass Transfer 73, 250 (2014)CrossRefGoogle Scholar
  2. Cule, D., Torquato, S.: Generating random media from limited microstructural information via stochastic optimization. J. Appl. Phys. 86, 3428 (1999)CrossRefGoogle Scholar
  3. Fra̧czek, D., Piasecki, R.: Decomposable multiphase entropic descriptor. Physica A 399, 75 (2014)CrossRefGoogle Scholar
  4. Fra̧czek, D., Olchawa, W., Piasecki, R., Wiśniowski, R.: Entropic descriptor based reconstruction of three-dimensional porous microstructures using a single cross-section. arXiv:1508.03857v2
  5. Fra̧czek, D., Piasecki, R., Olchawa, W., Wiśniowski, R.: Controlling spatial inhomogeneity in prototypical multiphase microstructures. Acta Phys. Pol. B 48, 1433 (2017)CrossRefGoogle Scholar
  6. Garboczi, E.J., Bentz, D.P.: Multiscale analytical/numerical theory of the diffusivity of concrete. Adv. Cem. Based Mater. 8, 77 (1998)CrossRefGoogle Scholar
  7. Jiao, Y., Stillinger, F.H., Torquato, S.: Modeling heterogeneous materials via two-point correlation functions: II. algorithmic details and applications. Phys. Rev. E 77, 031135 (2008)CrossRefGoogle Scholar
  8. Jiao, Y., Stillinger, F.H., Torquato, S.: A superior descriptor of random textures and its predictive capacity. Proc. Natl Acad. Sci. USA 106, 17634 (2009)CrossRefGoogle Scholar
  9. Jiao, Y., Stillinger, F.H., Torquato, S.: Distinctive features arising in maximally random jammed packings of superballs. Phys. Rev. E 81, 041304 (2010)CrossRefGoogle Scholar
  10. Liasneuski, H., Hlushkou, D., Khirevich, S., Höltzel, A., Tallarek, U., Torquato, S.: Impact of microstructure on the effective diffusivity in random packings of hard spheres. J. Appl. Phys. 116, 034904 (2014)CrossRefGoogle Scholar
  11. Olchawa, W., Piasecki, R.: Speeding up of microstructure reconstruction: II. Application to patterns of poly-dispersed islands. Comput. Mater. Sci. 98, 390 (2015)CrossRefGoogle Scholar
  12. Olchawa, W., Piasecki, R., Wiśniowski, R., Fra̧czek, D.: Low-cost approximate reconstructing of heterogeneous microstructures. Comput. Mater. Sci. 123, 26 (2016)CrossRefGoogle Scholar
  13. Piasecki, R.: Entropic measure of spatial disorder for systems of finite-sized objects. Physica A 277, 157 (2000a)CrossRefGoogle Scholar
  14. Piasecki, R.: Detecting self-similarity in surface microstructures. Surf. Sci. 454–456, 1058 (2000b)CrossRefGoogle Scholar
  15. Piasecki, R., Martin, M.T., Plastino, A.: Inhomogeneity and complexity measures for spatial patterns. Physica A 307, 157 (2002)CrossRefGoogle Scholar
  16. Piasecki, R.: Versatile entropic measure of grey level inhomogeneity. Physica A 388, 2403 (2009a)CrossRefGoogle Scholar
  17. Piasecki, R.: Statistical mechanics characterization of spatio-compositional inhomogeneity. Physica A 388, 4229 (2009b)CrossRefGoogle Scholar
  18. Piasecki, R.: Microstructure reconstruction using entropic descriptors. Proc. R. Soc. A 467, 806 (2011)CrossRefGoogle Scholar
  19. Piasecki, R., Olchawa, W.: Speeding up of microstructure reconstruction: I. Application to labyrinth patterns. Model. Simul. Mater. Sci. Eng. 20, 055003 (2012)CrossRefGoogle Scholar
  20. Piasecki, R., Plastino, A.: Entropic descriptor of a complex behaviour. Physica A 389, 397 (2010)CrossRefGoogle Scholar
  21. Sahimi, M.: Heterogeneous Materials, Vols. I and II. Springer, New York (2003)Google Scholar
  22. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock, 2nd edn. Wiley, Weinheim (2011)CrossRefGoogle Scholar
  23. Shah, N., Ottino, J.M.: Effective transport properties of disordered, multi-phase composites: application of real-space renormalization group theory. Chem. Eng. Sci. 41, 283 (1986)CrossRefGoogle Scholar
  24. Tahmasebi, P., Sahimi, M.: Cross-correlation function for accurate reconstruction of heterogeneous media. PRL 110, 078002 (2013)CrossRefGoogle Scholar
  25. Tahmasebi, P., Sahimi, M.: Reconstruction of nonstationary disordered materials and media: watershed transform and cross-correlation function. Phys. Rev. E 91, 032401 (2015)CrossRefGoogle Scholar
  26. Torquato, S.: Random Heterogeneous Materials. Springer, New York (2002)CrossRefGoogle Scholar
  27. Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479 (1988)CrossRefGoogle Scholar
  28. Tsallis, C.: Approach of complexity in nature: entropic nonuniqueness. Axioms 5, 20 (2016)CrossRefGoogle Scholar
  29. Xu, H., Dikin, D.A., Burkhart, C., Chen, W.: Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials. Comput. Mater. Sci. 85, 206 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ryszard Piasecki
    • 1
    Email author
  • Wiesław Olchawa
    • 1
  • Daniel Fra̧czek
    • 2
  • Ryszard Wiśniowski
    • 1
  1. 1.Institute of PhysicsUniversity of OpoleOpolePoland
  2. 2.Department of Materials PhysicsOpole University of TechnologyOpolePoland

Personalised recommendations