Skip to main content
Log in

Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Porous materials such as sandstones have important applications in petroleum engineering and geosciences. An accurate knowledge of the porous microstructure of such materials is crucial for the understanding of their physical properties and performance. Here, we present a procedure for accurate reconstruction of porous materials by stochastically fusing limited bimodal microstructural data including limited-angle X-ray tomographic radiographs and 2D optical micrographs. The key microstructural information contained in the micrographs is statistically extracted and represented using certain lower-order spatial correlation functions associated with the pore phase, and a probabilistic interpretation of the attenuated intensity in the tomographic radiographs is developed. A stochastic procedure based on simulated annealing that generalizes the widely used Yeong–Torquato framework is devised to efficiently incorporate and fuse the complementary bimodal imaging data for accurate microstructure reconstruction. The information content of the complementary microstructural data is systematically investigated using a 2D model system. Our procedure is subsequently applied to accurately reconstruct a variety of 3D sandstone microstructures with a wide range of porosities from limited X-ray tomographic radiographs and 2D optical micrographs. The accuracy of the reconstructions is quantitatively ascertained by directly comparing the original and reconstructed microstructures and their corresponding clustering statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blacklock, M., Bale, H., Begley, M., Cox, B.: Generating virtual textile composite specimens using statistical data from micro-computed tomography: 1D tow representations for the Binary Model. J. Mech. Phys. Solids 60(3), 451–470 (2012)

    Article  Google Scholar 

  • Bostanabad, R., Bui, A.T., Xie, W., Apley, D.W., Chen, W.: Stochastic microstructure characterization and reconstruction via supervised learning. Acta Mater. 103, 89–102 (2016)

    Article  Google Scholar 

  • Castañeda, P.P.: Exact second-order estimates for the effective mechanical properties of nonlinear composite materials. J. Mech. Phys. Solids 44(6), 827–862 (1996)

    Article  Google Scholar 

  • Chen, D., Teng, Q., He, X., Xu, Z., Li, Z.: Stable-phase method for hierarchical annealing in the reconstruction of porous media images. Phys. Rev. E 89(1), 013305 (2014)

    Article  Google Scholar 

  • Chen, S., Li, H., Jiao, Y.: Dynamic reconstruction of heterogeneous materials and microstructure evolution. Phys. Rev. E 92(2), 023301 (2015)

    Article  Google Scholar 

  • Chen, S., Kirubanandham, A., Chawla, N., Jiao, Y.: Stochastic multi-scale reconstruction of 3D microstructure consisting of polycrystalline grains and second-phase particles from 2D micrographs. Metall. Mater. Trans. A 47, 1–11 (2016)

    Google Scholar 

  • Childs, E.C., Collis-George, N.: The permeability of porous materials. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 201(1066), 392–405 (1950)

    Article  Google Scholar 

  • Cnudde, V., Boone, M.N.: High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci. Rev. 123, 1–17 (2013)

    Article  Google Scholar 

  • Collins, R.E.: Flow of Fluids Through Porous Materials. Reinhold Pub. Corp, New York (1976)

    Google Scholar 

  • Davis, M.E.: Ordered porous materials for emerging applications. Nature 417(6891), 813–821 (2002)

    Article  Google Scholar 

  • Fullwood, D., Kalidindi, S., Niezgoda, S., Fast, A., Hampson, N.: Gradient-based microstructure reconstructions from distributions using fast Fourier transforms. Mater. Sci. Eng. A 494(1), 68–72 (2008)

    Article  Google Scholar 

  • Fullwood, D.T., Niezgoda, S.R., Kalidindi, S.R.: Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater. 56(5), 942–948 (2008)

    Article  Google Scholar 

  • Gerke, K.M., Karsanina, M.V.: Improving stochastic reconstructions by weighting correlation functions in an objective function. EPL (Europhysics Letters) 111(5), 56002 (2015)

    Article  Google Scholar 

  • Gerke, K.M., Karsanina, M.V., Vasilyev, R.V., Mallants, D.: Improving pattern reconstruction using directional correlation functions. EPL (Europhysics Letters) 106(6), 66002 (2014)

    Article  Google Scholar 

  • Gerke, K.M., Karsanina, M.V., Mallants, D.: Universal stochastic multiscale image fusion: an example application for shale rock. Sci. Rep. 5, 15880 (2015)

    Article  Google Scholar 

  • Gommes, C.J., Friedrich, H., De Jongh, P.E., De Jong, K.P.: 2-Point correlation function of nanostructured materials via the grey-tone correlation function of electron tomograms: a three-dimensional structural analysis of ordered mesoporous silica. Acta Mater. 58(3), 770–780 (2010)

    Article  Google Scholar 

  • Gommes, C., Jiao, Y., Torquato, S.: Density of states for a specified correlation function and the energy landscape. Phys. Rev. Lett. 108(8), 080601 (2012a)

    Article  Google Scholar 

  • Gommes, C.J., Jiao, Y., Torquato, S.: Microstructural degeneracy associated with a two-point correlation function and its information content. Phys. Rev. E 85(5), 051140 (2012b)

    Article  Google Scholar 

  • Grechka, V., Vasconcelos, I., Kachanov, M.: The influence of crack shape on the effective elasticity of fractured rocks. Geophysics 71(5), D153–D160 (2006)

    Article  Google Scholar 

  • Groeber, M., Ghosh, S., Uchic, M.D., Dimiduk, D.M.: A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 1: statistical characterization. Acta Mater. 56(6), 1257–1273 (2008)

    Article  Google Scholar 

  • Guo, E.-Y., Chawla, N., Jing, T., Torquato, S., Jiao, Y.: Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation–erosion method. Mater. Charact. 89, 33–42 (2014)

    Article  Google Scholar 

  • Hajizadeh, A., Safekordi, A., Farhadpour, F.A.: A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images. Adv. Water Resour. 34(10), 1256–1267 (2011)

    Article  Google Scholar 

  • Hardin, T., Ruggles, T., Koch, D., Niezgoda, S., Fullwood, D., Homer, E.: Analysis of traction-free assumption in high-resolution EBSD measurements. J. Microsc. 260(1), 73–85 (2015)

    Article  Google Scholar 

  • Hlushkou, D., Liasneuski, H., Tallarek, U., Torquato, S.: Effective diffusion coefficients in random packings of polydisperse hard spheres from two-point and three-point correlation functions. J. Appl. Phys. 118(12), 124901 (2015)

    Article  Google Scholar 

  • Iglauer, S., Favretto, S., Spinelli, G., Schena, G., Blunt, M.J.: X-ray tomography measurements of power-law cluster size distributions for the nonwetting phase in sandstones. Phys. Rev. E 82(5), 056315 (2010)

    Article  Google Scholar 

  • Imdakm, A., Sahimi, M.: Computer simulation of particle transport processes in flow through porous media. Chem. Eng. Sci. 46(8), 1977–1993 (1991)

    Article  Google Scholar 

  • Jiao, Y., Chawla, N.: Modeling and characterizing anisotropic inclusion orientation in heterogeneous material via directional cluster functions and stochastic microstructure reconstruction. J. Appl. Phys. 115(9), 093511 (2014)

    Article  Google Scholar 

  • Jiao, Y., Stillinger, F., Torquato, S.: Modeling heterogeneous materials via two-point correlation functions: basic principles. Phys. Rev. E 76(3), 031110 (2007)

    Article  Google Scholar 

  • Jiao, Y., Stillinger, F., Torquato, S.: Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications. Phys. Rev. E 77(3), 031135 (2008)

    Article  Google Scholar 

  • Jiao, Y., Stillinger, F., Torquato, S.: A superior descriptor of random textures and its predictive capacity. Proc. Nat. Acad. Sci. 106(42), 17634–17639 (2009)

    Article  Google Scholar 

  • Jiao, Y., Stillinger, F.H., Torquato, S.: Geometrical ambiguity of pair statistics. II. Heterogeneous media. Phys. Rev. E 82(1), 011106 (2010)

    Article  Google Scholar 

  • Jiao, Y., Padilla, E., Chawla, N.: Modeling and predicting microstructure evolution in lead/tin alloy via correlation functions and stochastic material reconstruction. Acta Mater. 61(9), 3370–3377 (2013)

    Article  Google Scholar 

  • Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988)

    Google Scholar 

  • Kansal, A.R., Torquato, S.: Prediction of trapping rates in mixtures of partially absorbing spheres. J. Chem. Phys. 116(24), 10589–10597 (2002)

    Article  Google Scholar 

  • Karsanina, M.V., Gerke, K.M., Skvortsova, E.B., Mallants, D.: Universal spatial correlation functions for describing and reconstructing soil microstructure. PLoS ONE 10(5), e0126515 (2015)

    Article  Google Scholar 

  • Katz, A.J., Thompson, A.: Fractal sandstone pores: implications for conductivity and pore formation. Phys. Rev. Lett. 54(12), 1325 (1985)

    Article  Google Scholar 

  • Ketcham, R.A., Carlson, W.D.: Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput. Geosci. 27(4), 381–400 (2001)

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. science 220(4598), 671–680 (1983)

    Article  Google Scholar 

  • Korost, D., Mallants, D., Balushkina, N., Vasilyev, R., Khamidullin, R., Karsanina, M., Gerke, K., Kalmikov, G.: Determining physical properties of unconventional reservoir rocks: from laboratory methods to pore-scale modeling. In: SPE Unconventional Resources Conference and Exhibition-Asia Pacific. Society of Petroleum Engineers (2013)

  • Li, H., Chawla, N., Jiao, Y.: Reconstruction of heterogeneous materials via stochastic optimization of limited-angle X-ray tomographic projections. Scripta Mater. 86, 48–51 (2014)

    Article  Google Scholar 

  • Li, H., Kaira, S., Mertens, J., Chawla, N., Jiao, Y.: Accurate stochastic reconstruction of heterogeneous microstructures by limited X-ray tomographic projections. J. Microsc. 264, 339 (2016a)

    Article  Google Scholar 

  • Li, H., Singh, S., Kaira, S., Mertens, J., Williams, J.J., Chawla, N., Jiao, Y.: Microstructural quantification and property prediction using limited X-ray tomography data. JOM 68, 2288 (2016b)

    Article  Google Scholar 

  • Li, H., Singh, S., Chawla, N., Jiao, Y.: Direct extraction of spatial correlation functions from limited X-ray tomography data for microstructure quantification (2016c, in preparation)

  • Lindquist, W.B., Venkatarangan, A., Dunsmuir, J., Wong, Tf: Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J. Geophys. Res. Solid Earth 105(B9), 21509–21527 (2000)

    Article  Google Scholar 

  • Liu, X., Shapiro, V.: Random heterogeneous materials via texture synthesis. Comput. Mater. Sci. 99, 177–189 (2015)

    Article  Google Scholar 

  • Lu, A.H., Schüth, F.: Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv. Mater. 18(14), 1793–1805 (2006)

    Article  Google Scholar 

  • Lu, B., Torquato, S.: Lineal-path function for random heterogeneous materials. Phys. Rev. A 45(2), 922 (1992a)

  • Lu, B., Torquato, S.: Lineal-path function for random heterogeneous materials. II. Effect of polydispersivity. Phys. Rev. A 45(10), 7292 (1992b)

  • Nugent, P., Belmabkhout, Y., Burd, S.D., Cairns, A.J., Luebke, R., Forrest, K., Pham, T., Ma, S., Space, B., Wojtas, L.: Porous materials with optimal adsorption thermodynamics and kinetics for CO\(_2\) separation. Nature 495(7439), 80–84 (2013)

    Article  Google Scholar 

  • Pettijohn, F.J., Potter, P.E., Siever, R.: Sand and Sandstone. Springer, New York (2012)

    Google Scholar 

  • Pham, D., Torquato, S.: Exactly realizable bounds on the trapping constant and permeability of porous media. J. Appl. Phys. 97(1), 013535 (2005)

    Article  Google Scholar 

  • Pilotti, M.: Reconstruction of clastic porous media. Transp. Porous Media 41(3), 359–364 (2000)

    Article  Google Scholar 

  • Prager, S.: Interphase transfer in stationary two-phase media. Chem. Eng. Sci. 18(4), 227–231 (1963)

    Article  Google Scholar 

  • Rinaldi, R.G., Blacklock, M., Bale, H., Begley, M.R., Cox, B.N.: Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3D tow representations. J. Mech. Phys. Solids 60(8), 1561–1581 (2012)

    Article  Google Scholar 

  • Roberts, A.P.: Statistical reconstruction of three-dimensional porous media from two-dimensional images. Phys. Rev. E 56(3), 3203 (1997)

    Article  Google Scholar 

  • Rowsell, J.L., Yaghi, O.M.: Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73(1), 3–14 (2004)

    Article  Google Scholar 

  • Sahimi, M.: Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65(4), 1393 (1993)

    Article  Google Scholar 

  • Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. Wiley, New York (2011)

    Book  Google Scholar 

  • Sahimi, M., Gavalas, G.R., Tsotsis, T.T.: Statistical and continuum models of fluid–solid reactions in porous media. Chem. Eng. Sci. 45(6), 1443–1502 (1990)

    Article  Google Scholar 

  • Saylor, D.M., Fridy, J., El-Dasher, B.S., Jung, K.-Y., Rollett, A.D.: Statistically representative three-dimensional microstructures based on orthogonal observation sections. Metall. Mater. Trans. A 35(7), 1969–1979 (2004)

    Article  Google Scholar 

  • Schwartz, L., Auzerais, F., Dunsmuir, J., Martys, N., Bentz, D., Torquato, S.: Transport and diffusion in three-dimensional composite media. Phys. A 207(1–3), 28–36 (1994)

    Article  Google Scholar 

  • Tahmasebi, P., Hezarkhani, A.: A fast and independent architecture of artificial neural network for permeability prediction. J. Petrol. Sci. Eng. 86, 118–126 (2012)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Reconstruction of three-dimensional porous media using a single thin section. Phys. Rev. E 85(6), 066709 (2012)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Cross-correlation function for accurate reconstruction of heterogeneous media. Phys. Rev. Lett. 110(7), 078002 (2013)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Reconstruction of nonstationary disordered materials and media: watershed transform and cross-correlation function. Phys. Rev. E 91(3), 032401 (2015)

    Article  Google Scholar 

  • Tang, T., Teng, Q.-Z., He, X.-H., Luo, D.: A pixel selection rule based on the number of different-phase neighbours for the simulated annealing reconstruction of sandstone microstructure. J. Microsc. 234(3), 262–268 (2009)

    Article  Google Scholar 

  • Torquato, S.: Interfacial surface statistics arising in diffusion and flow problems in porous media. J. Chem. Phys. 85(8), 4622–4628 (1986)

    Article  Google Scholar 

  • Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties, vol. 16. Springer, New York (2013)

    Google Scholar 

  • Torquato, S., Avellaneda, M.: Diffusion and reaction in heterogeneous media: Pore size distribution, relaxation times, and mean survival time. J. Chem. Phys. 95(9), 6477–6489 (1991)

    Article  Google Scholar 

  • Torquato, S., Lado, F.: Effective properties of two-phase disordered composite media: II. Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres. Phys. Rev. B 33(9), 6428 (1986)

    Article  Google Scholar 

  • Torquato, S., Pham, D.: Optimal bounds on the trapping constant and permeability of porous media. Phys. Rev. Lett. 92(25), 255505 (2004)

    Article  Google Scholar 

  • Torquato, S., Yeong, C.: Universal scaling for diffusion-controlled reactions among traps. J. Chem. Phys. 106(21), 8814–8820 (1997)

    Article  Google Scholar 

  • Torquato, S., Beasley, J., Chiew, Y.: Two-point cluster function for continuum percolation. J. Chem. Phys. 88(10), 6540–6547 (1988)

    Article  Google Scholar 

  • Trinchi, A., Yang, Y.S., Huang, J.Z., Falcaro, P., Buso, D., Cao, L.Q.: Study of 3D composition in a nanoscale sample using data-constrained modelling and multi-energy X-ray CT. Model. Simul. Mater. Sci. Eng. 20(20), 015013 (2012)

    Article  Google Scholar 

  • Turner, D.M., Kalidindi, S.R.: Statistical construction of 3-D microstructures from 2-D exemplars collected on oblique sections. Acta Mater. 102, 136–148 (2016)

    Article  Google Scholar 

  • Wang, H.P., Yang, Y.S., Wang, Y.D., Yang, J.L., Jia, J., Nie, Y.H.: Data-constrained modelling of an anthracite coal physical structure with multi-spectrum synchrotron X-ray CT. Fuel 106(2), 219–225 (2013a)

    Article  Google Scholar 

  • Wang, Y., Yang, Y., Xiao, T., Liu, K., Clennell, B., Zhang, G., Wang, H.: Synchrotron-based data-constrained modeling analysis of microscopic mineral distributions in limestone. Int. J. Geosci. 4(2), 344–351 (2013b)

    Article  Google Scholar 

  • Wellington, S.L., Vinegar, H.J.: X-ray computerized tomography. J. Petrol. Technol. 39(08), 885–898 (1987)

    Article  Google Scholar 

  • Xu, H., Greene, M.S., Deng, H., Dikin, D., Brinson, C., Liu, W.K., Burkhart, C., Papakonstantopoulos, G., Poldneff, M., Chen, W.: Stochastic reassembly strategy for managing information complexity in heterogeneous materials analysis and design. J. Mech. Des. 135(10), 101010 (2013)

    Article  Google Scholar 

  • Xu, W., Chen, H., Chen, W., Jiang, L.: Prediction of transport behaviors of particulate composites considering microstructures of soft interfacial layers around ellipsoidal aggregate particles. Soft Matter 10(4), 627–638 (2014)

    Article  Google Scholar 

  • Yang, Y.S., Liu, K.Y., Mayo, S., Tulloh, A., Clennell, M.B., Xiao, T.Q.: A data-constrained modelling approach to sandstone microstructure characterisation. J. Petrol. Sci. Eng. 105(3), 76–83 (2013)

    Article  Google Scholar 

  • Yeong, C., Torquato, S.: Reconstructing random media. II. Three-dimensional media from two-dimensional cuts. Phys. Rev. E 58(1), 224 (1998)

    Article  Google Scholar 

  • Yeong, C., Torquato, S.: Reconstructing random media. Phys. Rev. E 57(1), 495 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. Muhammad Sahimi and Prof. Pejman Tahmasebi for their kind invitation for this special issue. This work is supported by ACS Petroleum Research Fund under Grant No. 56474-DNI10 (Program manager: Dr. Burtrand Lee).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chen, PE. & Jiao, Y. Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data. Transp Porous Med 125, 5–22 (2018). https://doi.org/10.1007/s11242-017-0889-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0889-x

Keywords

Navigation