Silicon alleviates the negative effects of arsenic in poplar callus in relation to its nutrient concentrations

Abstract

The contamination of water and soil by arsenic (As) is a global environmental, health, and agricultural issue. The study of As toxicity in plants and its interaction with nutrients requires special attention. We investigated the impact of low concentrations of As on poplar callus and the effectiveness of silicon (Si) in the alleviation of As stress. We focused on the effects of As and/or Si on the concentration of nutrients and its relationship with other parameters studied: callus growth, the concentration of photosynthetic pigments, and the accumulation of As. Using a correlation matrix heatmap we revealed the associations between the above-mentioned parameters. The principal component analysis (PCA) was used to show the variability between the treatments (control, Si, As, As + Si) and the time stages (short and long cultivation). The concentrations of photosynthetic pigments were impacted extremely by both the As and the As + Si treatments. The nutrient balance was heavily disrupted by As but considerably improved by Si. The PCA revealed a strong correlation among growth, photosynthesis pigments, K, Zn, and Mn. We analysed the data from the literature that specified the changes in the concentrations of nutrients and growth induced by As, and compared them with our results. This heatmap analysis revealed the similarity between poplar callus and sensitive plants.

Key message

The principal component analysis showed that the variability between the short and long cultivation in the As and/or Si treatment was high in callus growth, nutrient, and chlorophyll concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdi H, Williams LJ (2010) Principal component analysis. WIREs Comp Stat 2:433–459. https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  2. Alhasnawi AN, Zain CRCM, Kadhimi AA, Isahak A, Mohamad A, Yusoff WMW (2017) Accumulation of antioxidants in rice callus (Oryza sativa L.) induced by β-glucan and salt stress. Austral J Crop Sci 11:118–125. https://doi.org/10.21475/ajcs.2017.11.01.296

    CAS  Article  Google Scholar 

  3. Barbosa MAM, da Silva MHL, Viana GDM, Ferreira TR, de Carvalho Souza CLF, Lobato EMSG, da Silva LAK (2015) Beneficial repercussion of silicon (Si) application on photosynthetic pigments in maize plants. Austral J Crop Sci 9:1113–1118

    CAS  Google Scholar 

  4. Barrachina AC, Carbonell FB, Beneyto JM (1994) Effect of arsenite on the concentrations of micronutrients in tomato plants grown in hydroponic culture. J Plant Nutr 17:1887–1903. https://doi.org/10.1080/01904169409364853

    CAS  Article  Google Scholar 

  5. Batygina T, Osadchii YV (2015) Homology of cellular elements of reproductive and ontogenic structures. Usp Sovrem Biol 135:337–345

    Google Scholar 

  6. Bhat JA, Shivaraj SM, Singh P, Navadagi DB, Tripathi DK, Dash PK, Solanke AU, Sonah H, Deshmukh R (2019) Role of silicon in mitigation of heavy metal stresses in crop plants. Plants 8:71. https://doi.org/10.3390/plants8030071

    CAS  Article  PubMed Central  Google Scholar 

  7. Carbonell AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH Jr (1998) Bioavailability and uptake of arsenic by wetland vegetation: effects on plant growth and nutrition. J Environ Sci Health Part A 33:45–66. https://doi.org/10.1080/10934529809376717

    Article  Google Scholar 

  8. Chandrakar V, Pandey N, Keshavkant S (2018) Plant responses to arsenic toxicity: morphology and physiology. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Mechanisms of arsenic toxicity and tolerance in plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-1292-2

    Google Scholar 

  9. Čierna M, Kákoniová D, Lišková D (1991) A medium for rapid plant callus growth. Biologia 46:271–272

    Google Scholar 

  10. Confalonieri M, Balestrazzi A, Bisoffi S, Carbonera D (2003) In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement. Plant Cell Tissue Organ Cult 72:109–138. https://doi.org/10.1023/A:1022265504775

    CAS  Article  Google Scholar 

  11. Coskun D, Deshmukh R, Sonah R, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR (2019) The controversies of silicon’s role in plant biology. New Phytol 221:67–85. https://doi.org/10.1111/nph.15343

    Article  PubMed  Google Scholar 

  12. da Silva AJ, Nascimento CW, Gouveia-Neto AS, Silva EA Jr (2015) Effects of silicon on alleviating arsenic toxicity in maize plants. R Bras Ci Solo 39:289–296. https://doi.org/10.1590/01000683rbcs20150176

    Article  Google Scholar 

  13. Diaz-Colon JD, Bonny RW, Dawis FS, Bauer JR (1972) Comparative effects and concentrations of Picloran, 2,4,5-T and Dicamba in tissues culture. Physiol Plant 27:60–64. https://doi.org/10.1111/j.1399-3054.1972.tb01137.x

    CAS  Article  Google Scholar 

  14. Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76. https://doi.org/10.1002/bit.22280

    CAS  Article  PubMed  Google Scholar 

  15. Duan G, Liu W, Chen X, Hu Y, Zhu Y (2013) Association of arsenic with nutrient elements in rice plants. Metallomics 5:784–792. https://doi.org/10.1039/c3mt20277a

    CAS  Article  PubMed  Google Scholar 

  16. Efferth T (2019) Biotechnology applications of plant callus cultures. Engineering 5:50–59. https://doi.org/10.1016/j.eng.2018.11.006

    CAS  Article  Google Scholar 

  17. Ellis JP, Camper ND (1995) In vitro cultured cocklebur (Xanthium strumarium L.) responses to dimercaptopropanesulfonic acid and monosodium methanearsonate. J Plant Growth Reg 14:9. https://doi.org/10.1007/BF00212640

    CAS  Article  Google Scholar 

  18. Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182. https://doi.org/10.3389/fphys.2012.00182

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Flanagan SV, Johnston RB, Zheng Y (2012) Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation. Bull World Health Organ 90:839–846. https://doi.org/10.2471/BLT.11.101253

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fu C, Li M, Zhang Y, Zhang Y, Yan Y, Wang Y (2015) Morphology, photosynthesis, and internal structure alterations in field apple leaves under hidden and acute zinc deficiency. Sci Hortic 193:47–54. https://doi.org/10.1016/j.scienta.2015.06.016

    CAS  Article  Google Scholar 

  21. Geng A, Wang X, Wu L, Wang F, Wu Z, Yang H, Chen Y, Wen D, Liu X (2018) Silicon improves growth and alleviates oxidative stress in rice seedlings (Oryza sativa L.) by strengthening antioxidant defense and enhancing protein metabolism under arsanilic acid exposure. Ecotoxicol Environ Saf 30:266–273. https://doi.org/10.1016/j.ecoenv.2018.03.050

    CAS  Article  Google Scholar 

  22. Gerardeaux E, Saur E, Constantin J, Porté A, Jordan-Meille L (2009) Effect of carbon assimilation on dry weight production and partitioning during vegetative growth. Plant Soil 324:329–343. https://doi.org/10.1007/s11104-009-9950-z

    CAS  Article  Google Scholar 

  23. Greger M, Bergqvist C, Sandhi A, Landberg T (2015) Influence of silicon on arsenic uptake and toxicity in lettuce. J Appl Bot Food Qual 88:234–240. https://doi.org/10.5073/JABFQ.2015.088.034

    CAS  Article  Google Scholar 

  24. Greger M, Kabir AH, Landberg T, Maity PJ, Lindberg S (2016) Silicate reduces cadmium uptake into cells of wheat. Environ Pollut 211:90–97. https://doi.org/10.1016/j.envpol.2015.12.027

    CAS  Article  PubMed  Google Scholar 

  25. Hafsi C, Debez A, Abdelly C (2014) Potassium deficiency in plants: effects and signaling cascades. Acta Physiol Plant 36:1055–1070. https://doi.org/10.1007/s11738-014-1491-2

    CAS  Article  Google Scholar 

  26. Hermans C, Verbruggen N (2005) Physiological characterization of Mg deficiency in Arabidopsis thaliana. J Exp Bot 56:2153–2161. https://doi.org/10.1093/jxb/eri215

    CAS  Article  PubMed  Google Scholar 

  27. Hossain MB, Jahiruddin M, Loeppert RH, Panaullah GM, Islam MR, Duxbury JM (2009) The effect of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant Soil 317:167–176. https://doi.org/10.1007/s11104-008-9798-7

    CAS  Article  Google Scholar 

  28. Hu H, Sparks D (1991) Zinc deficiency inhibits chlorophyll synthesis and gas exchange in “Stuart” pecan. Hortscience 26:267–268. https://doi.org/10.21273/HORTSCI.26.3.267

    CAS  Article  Google Scholar 

  29. Jurkovič Ľ, Hiller E, Veselská V, Peťková K (2011) Arsenic concentrations in soils impacted by dam failure of coal-ash pond in Zemianske Kostolany, Slovakia. Bull Environ Contam Toxicol 86:433–437. https://doi.org/10.1007/s00128-011-0222-2

    CAS  Article  PubMed  Google Scholar 

  30. Kassambara I, Mundt F (2020) factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra

  31. Khan E, Gupta M (2018) Arsenic–silicon priming of rice (Oryza sativa L) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Sci Rep 8:10301. https://doi.org/10.1038/s41598-018-28712-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Kofroňová M, Mašková P, Lipavská H (2018) Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation. Planta 248:19–35. https://doi.org/10.1007/s00425-018-2906-x

    CAS  Article  PubMed  Google Scholar 

  33. Kruglova NN, Seldimirova OA, Zinatullina AE (2018) In vitro callus as a model system for the study of plant stress-resistance to abiotic factors (on the example of cereals). Biol Bull Rev 8:518–526. https://doi.org/10.1134/S2079086418060063

    Article  Google Scholar 

  34. Kumar V, Sharma A, Kohli SK, Bali S, Sharma M, Kumar R, Bhardwaj R, Thukral AK (2019) Differential distribution of polyphenols in plants using multivariate techniques. Biotechnol Res Int 3(1):1–21. https://doi.org/10.1016/j.biori.2019.03.001

    CAS  Article  Google Scholar 

  35. Labancová E, Vivodová Z, Kučerová D, Lišková D, Kollárová K (2020) The cadmium tolerance development of poplar callus is influenced by silicon. Ecotoxicology 29:987–1002. https://doi.org/10.1007/s10646-020-02242-z

    CAS  Article  PubMed  Google Scholar 

  36. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. https://doi.org/10.1016/0076-6879(87)48036-1

    CAS  Article  Google Scholar 

  37. Liu X, Feng HY, Fu JW, Chen Y, Cao Y, Ma LQ (2018) Arsenic-induced nutrient uptake in As-hyperaccumulator and their potential Pteris vittata role to enhance plant growth. Chemosphere 198:425–431. https://doi.org/10.1016/j.chemosphere.2018.01.077

    CAS  Article  PubMed  Google Scholar 

  38. Liu X, Zhang S, Shan X, Zhu YG (2005) Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 61:293–301. https://doi.org/10.1016/j.chemosphere.2005.01.088

    CAS  Article  PubMed  Google Scholar 

  39. Maghsoudi K, Emam Y, Ashraf M (2015) Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turk J Bot 39:625–634

    CAS  Google Scholar 

  40. Máthé C, Mosolygó Á, Surányi G, Beke A, Demeter Z, Tóth VR, Beyer D, Mészáros I, Hamvas M (2012) Genotype and explant-type dependent morphogenesis and silicon response of common reed (Phragmites australis) tissue cultures. Aquat Bot 97:57–63. https://doi.org/10.1016/j.aquabot.2011.11.005

    CAS  Article  Google Scholar 

  41. Mishra S, Alfeld M, Sobotka R, Andresen E, Falkenber G, Kűpper H (2016) Analysis of sublethal arsenic toxicity to Ceratophyllum demersum: subcellular distribution of arsenic and inhibition of chlorophyll biosynthesis. J Exp Bot 67:4639–4646. https://doi.org/10.1093/jxb/erw238

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Päivӧke AEA, Simola LK (2001) Arsenate toxicity to Pisum sativum: mineral nutrients chlorophyll content, and phytase activity. Ecotoxicol Environ Saf 49:111–121. https://doi.org/10.1006/eesa.2001.2044

    CAS  Article  Google Scholar 

  43. Pandey C, Khan E, Panthri M, Tripathi RD, Gupta M (2016) Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress. Plant Physiol Biochem 104:216–225. https://doi.org/10.1016/j.plaphy.2016.03.032

    CAS  Article  PubMed  Google Scholar 

  44. Pfeifer HR, Beatrizotti G, Berthoud J, Rossa MD, Girardet A, Jaggli M, Lavanchy GC, Reymond D, Righetti G, Schlegel C, Schmit V, Temgoua E (2002) Natural arsenic-contamination of surface and ground waters in Southern Switzerland (Ticino). Bull Appl Geol 7:81–103

    Google Scholar 

  45. Pulford ID, Watson C (2003) Phytoremediation of heavy metal contaminated land by trees—a review. Environ Int 29:529–540. https://doi.org/10.1016/S0160-4120(02)00152-6

    CAS  Article  PubMed  Google Scholar 

  46. R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  47. Rai AN, Srivastava S, Paladi R, Suprasanna P (2012) Calcium supplementation modulates arsenic-inducedalterations and augments arsenic accumulation in calluscultures of Indian mustard (Brassica juncea (L.) Czern.). Protoplasma 249:725–736. https://doi.org/10.1007/s00709-011-0316-z

    CAS  Article  PubMed  Google Scholar 

  48. Rai R, Pandey S, Rai SP (2011) Arsenic-induced changes in morphological, physiological, and biochemical attributes and artemisinin biosynthesis in Artemisia annua, an antimalarial plant. Ecotoxicology 20:1900–1913. https://doi.org/10.1007/s10646-011-0728-8

    CAS  Article  PubMed  Google Scholar 

  49. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391–396. https://doi.org/10.1136/pmj.79.933.391

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Reed ST, Ayala-Silva T, Dunn CB, Gordon GG (2015) Effects of arsenic on nutrient accumulation and distribution in selected ornamental plants. Agricult Sci 6:1513–1531. https://doi.org/10.4236/as.2015.612145

    Article  Google Scholar 

  51. Roosta HR, Estaji A, Niknam F (2018) Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica 56:606–615. https://doi.org/10.1007/s11099-017-0696-1

    CAS  Article  Google Scholar 

  52. Saldaña-Robles A, Abraham-Juárez MR, Saldaña-Robles AL, Saldaña-Robles N, Ozuna C, Gutiérrez-Chávez AJ (2018) The negative effect of arsenic in agriculture: irrigation water, soil and crops, state of the art. Appl Ecol Environ Res 16:1533–1551. https://doi.org/10.15666/aeer/1602_15331551

    Article  Google Scholar 

  53. Sanglard LMVP, Detmann KC, Martins SCV, Teixeira RA, Pereira LF, Sanglard ML, Fernie AR, Araújo WL, DaMatta FM (2016) The role of silicon in metabolic acclimation of rice plants challenged with arsenic. Environ Exp Bot 123:22–36. https://doi.org/10.1016/j.envexpbot.2015.11.004

    CAS  Article  Google Scholar 

  54. Sanglard LMVP, Martins SCV, Detmann KC, Silva PEM, Lavinsky AO, Silva MM, Detmann E, Araújo WL, DaMatta FM (2014) Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. Physiol Plant 152:355–366. https://doi.org/10.1111/ppl.12178

    CAS  Article  PubMed  Google Scholar 

  55. Schober P, Boer C, Schwarte LA (2018) Correlation coefficients: appropriate use and interpretation. Anesth Analg 126:1763–1768. https://doi.org/10.1213/ANE.0000000000002864

    Article  PubMed  Google Scholar 

  56. Shaibur MR, Kitajima N, Sugawara R, Kondo T, Huq SMI, Kawai S (2006) Physiological and mineralogical properties of arsenic-induced chlorosis in rice seedlings grown hydroponically. Soil Sci Plant Nutr 52:691–700. https://doi.org/10.1111/j.1747-0765.2006.00085.x

    CAS  Article  Google Scholar 

  57. Shenker M, Pessner OE, Tel-Or E (2004) Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J Plant Physiol 161:197–202. https://doi.org/10.1078/0176-1617-00931

    CAS  Article  PubMed  Google Scholar 

  58. Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110. https://doi.org/10.1016/j.ecoenv.2008.09.022

    CAS  Article  PubMed  Google Scholar 

  59. Shukla A, Srivastava S (2017) Emerging aspects of bioremediation of arsenic. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-50654-8_17

    Google Scholar 

  60. Singh P, Misra A, Srivastava NK (2001) Influence of Mn deficiency on growth, chlorophyll content, physiology, and essential monoterpene oil(s) in genotypes. Photosynthetica 39:473–476. https://doi.org/10.1023/A:1015107116205

    CAS  Article  Google Scholar 

  61. Singh SK, Reddy VR (2017) Potassium starvation limits soybean growth more than the photosynthetic processes across CO2 levels. Front Plant Sci 8:991. https://doi.org/10.3389/fpls.2017.00991

    Article  PubMed  PubMed Central  Google Scholar 

  62. Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotox Environ Saf 112:247–270. https://doi.org/10.1016/j.ecoenv.2014.10.009

    CAS  Article  Google Scholar 

  63. Spognardi S, Bravo I, Beni C, Menegoni P, Pietrelli L, Papetti P (2019) Arsenic accumulation in edible vegetables and health risk reduction by groundwater treatment using an adsorption process. Environ Sci Pollut Res 26:2505–32516. https://doi.org/10.1007/s11356-019-06396-0

    CAS  Article  Google Scholar 

  64. Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103. https://doi.org/10.1590/S0042-96862000000900005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29:87–95

    Google Scholar 

  66. Sun X, Li J (2013) Pairheatmap: comparing expression profiles of gene groups in heatmaps. Comput Methods Prog Biomed 112(3):599–606. https://doi.org/10.1016/j.cmpb.2013.07.010

    Article  Google Scholar 

  67. Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2016) Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Front Environ Sci 4:46. https://doi.org/10.3389/fenvs.2016.00046

    Article  Google Scholar 

  68. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165. https://doi.org/10.1016/j.tibtech.2007.02.003

    CAS  Article  PubMed  Google Scholar 

  69. Tu C, Ma LQ (2003) Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L. Plant Soil 249:373–382. https://doi.org/10.1023/A:1022837217092

    CAS  Article  Google Scholar 

  70. Vromman D, Martínez JP, Kumar M, Šlejkovec Z, Lutts S (2018) Comparative effects of arsenite (As(III)) and arsenate (As(V)) on whole plants and cell lines of the arsenic-resistant halophyte plant species Atriplex atacamensis. Environ Sci Pollut Res 25:34473–34486. https://doi.org/10.1007/s11356-018-3351-x

    CAS  Article  Google Scholar 

  71. Vu VQ (2011) ggbiplot: a ggplot2 based biplot. R package version 0.55. http://github.com/vqv/ggbiplot

  72. Wallace A, Mueller RT, Wood RA (1980) Arsenic phytotoxicity and interactions in bush bean plants grown in solution culture. J Plant Nutr 2:111–113. https://doi.org/10.1080/01904168009362747

    CAS  Article  Google Scholar 

  73. Wang P, Chen X, Xu X, Lu C, Zhang W, Zhao FJ (2018) Arsenate induced chlorosis 1/translocon at the outer envelope membrane of chloroplasts 132 protects chloroplasts from arsenic toxicity. Plant Physiol 178:1568–1583. https://doi.org/10.1104/pp.18.01042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2020) gplots: various R programming tools for plotting data. R package version 3.0.3. https://CRAN.R-project.org/package=gplots

  75. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Google Scholar 

  76. Yadav G, Srivastava PK, Parihar P, Tiwari S, Prasad SM (2016) Oxygen toxicity and antioxidative responses in arsenic stressed Helianthus annuus L. seedlings against UV-B. J Photochem Photobiol B-Biol 165:58–70. https://doi.org/10.1016/j.jphotobiol.2016.10.011

    CAS  Article  Google Scholar 

  77. Yang X, Chen H, Xu W, He Z, Ma M (2007) Hyperaccumulation of arsenic by callus, sporophytes and gametophytes of Pteris vittata cultured in vitro. Plant Cell Rep 26:1889–1897. https://doi.org/10.1007/s00299-007-0388-6

    CAS  Article  PubMed  Google Scholar 

  78. Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559. https://doi.org/10.1146/annurev-arplant-042809-112152

    CAS  Article  PubMed  Google Scholar 

  79. Zhao S, Guo Y, Sheng Q, Shyr Y (2014) Advanced heat map and clustering analysis using heatmap3. Biomed Res Int. https://doi.org/10.1155/2014/986048

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency, Contract No. APVV-17-0164. The authors thank MSc. Matej Holek, for the graphical edit of Supplementary Fig. S1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karin Kollárová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Amita Bhattacharya.

Supplementary information

Below is the link to the electronic supplementary material.

(DOCX 328 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kučerová, D., Vivodová, Z. & Kollárová, K. Silicon alleviates the negative effects of arsenic in poplar callus in relation to its nutrient concentrations. Plant Cell Tiss Organ Cult (2021). https://doi.org/10.1007/s11240-020-02007-w

Download citation

Keywords

  • Arsenic
  • Correlation matrix heatmap
  • Growth
  • Photosynthetic pigments
  • Principal component analysis
  • Silicon