Identification of tung tree FATB as a promoter of 18:3 fatty acid accumulation through hydrolyzing 18:0-ACP

Abstract

Tung oil extracted from tung tree (Vernicia fordii) seeds is very industrially useful due to its drying quality given by α-eleostearic acid (ESA). Previous comparative transcriptome analysis revealed that a putative tung tree FATB gene (VfFATB) encoding fatty acyl-ACP (acyl carrier protein) thioesterase B (FATB) was significantly unregulated during oil synthesis stage. Fatty acyl-ACP thioesterases determine the length of the fatty acid carbon chains through releasing acyl chain from acyl-ACP. For a better understanding of the mechanism of α-eleostearic acid biosynthesis, it would be desirable to further characterize the function of VfFATB gene involved in fatty acid synthesis pathways in tung tree seeds. In view of this, VfFATB gene was cloned by RACE (rapid amplification of cDNA ends) method to further characterize its functions. Expression profiles of VfFATB were positively correlated with oil contents in tung tree seeds. VfFATB is localized in chloroplasts and restored the abnormal development of Arabidopsis fatb mutants. Fatty acid profiles in VfFATB-transformed E. coli (Escherichia coli) cells and Arabidopsis fatb mutant plants showed that the presence of VfFATB led to accumulation of 18:0 and 18:3 fatty acids in vivo. In vitro thioesterase assay using crude extract from seed tissue of tung tree and purified VfFATB protein further indicated that 18:0-ACP rather than 18:3-ACP was the main substrate of VfFATB. The above results strongly suggest that VfFATB, an 18:0-ACP-preferring thioesterase, is essential for plant normal development and promotes the accumulation of 18:3 fatty acid through hydrolyzing 18:0-ACP to produce free 18:0 fatty acid as the substrate of downstream related enzymes.

Key message

VfFATB functions in chloroplast. VfFATB expression level is positively correlated with tung oil content. VfFATB is essential for plant normal development. VfFATB is an 18:0-ACP-preferring thioesterase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

FAT:

Fatty acyl-ACP thioesterase

ACP:

Acyl carrier protein

RACE:

Rapid amplification of cDNA ends

VLCFA:

Very-long-chain fatty acid

ESA:

α-Eleostearic acid

FAME:

Fatty acid methyl ester

FAD:

Fatty acyl desaturase

References

  1. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    PubMed  Article  PubMed Central  Google Scholar 

  2. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris 316:1194–1199

    CAS  Google Scholar 

  3. Black PN, DiRusso CC (1994) Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli. Biochim Biophys Acta 1210:123–145

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15:1020–1033

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Browse J, Somerville C (1991) Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42:467–506

    CAS  Article  Google Scholar 

  6. Chang MK, Conkerton EJ, Chapital D, Wan PJ (1994) Behavior of diglycerides and conjugated fatty acid triglycerides in reverse-phase chromatography. J Am Oil Chem Soc 71:1173–1175

    CAS  Article  Google Scholar 

  7. Chen H, Jiang GX, Long HX, Tan XF (2013) Analysis of oil synthesis metabolism pathways based on transcriptome changes in tung oil tree′s seeds during three different development stages. Hereditas 35:1403–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dani KG, Hatti KS, Ravikumar P, Kush A (2011) Structural and functional analyses of a saturated acyl ACP thioesterase, type B from immature seed tissue of Jatropha curcas. Plant Biol 13:453–461

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. Dehesh K, Jones A, Knutzon DS, Voelker TA (1996) Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of ChFatB2, a thioesterase cDNA from Cuphea hookeriana. Plant J 9:167–172

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. Doermann P, Voelker TA, Ohlrogge JB (2000) Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1. Plant Physiol 123:637–644

    Article  Google Scholar 

  11. Dyer JM, Mullen RT (2005) Development and potential of genetically engineered oilseeds. Seed Sci Res 15:255–267

    CAS  Article  Google Scholar 

  12. Dyer JM, Chapital DC, Kuan JC, Mullen RT, Turner C, McKeon TA, Pepperman AB (2002) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol 130:2027–2038

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Facciotti MT, Yuan L (1998) Molecular dissection of the plant acyl-acyl carrier protein thioesterases. Fett Lipid 100:167–172

    CAS  Article  Google Scholar 

  14. Feng Y, Zhang Y, Wang Y, Liu J, Liu Y, Cao X, Xue S (2018) Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis. Appl Microbiol Biotechnol 102:3173–3182

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Harwood JL (1988) Fatty acid metabolism. Annu Rev Plant Physiol Plant Mol Biol 39:101–138

    CAS  Article  Google Scholar 

  16. Hernández Lozada NJ, Lai RY, Simmons TR, Thomas KA, Chowdhury R, Maranas CD, Pfleger BF (2018) Highly active C8-Acyl-ACP thioesterase variant isolated by a synthetic selection strategy. ACS Synth Biol 7:2205–2215

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Jaworski J, Cahoon EB (2003) Industrial oils from transgenic plants. Curr Opin Plant Biol 6:178–184

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7:359–371

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Klein K, Steinberg R, Fiethen B, Overath P (1971) Fatty acid degradation in Escherichia coli: an inducible system for the uptake of fatty acids and further characterization of old mutants. Eur J Biochem 19:442–450

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. Knutzon DS, Bleibaum JL, Nelsen J, Kridl JC, Thompson GA (1992) Isolation and characterization of two safflower oleoyl-acyl carrier protein thioesterase cDNA clones. Plant Physiol 100:1751–1758

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Liu M, Long H, Li W, Shi M, Cao H, Zhang L, Tan X (2019) Boosting C16 fatty acid biosynthesis of Escherichia coli, yeast and tobacco by tung tree (Vernicia fordii Hemsl.) beta-hydroxyacyl-acyl carrier protein dehydratase gene. Ind Crop Prod 127:46–54

    CAS  Article  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCt method. Methods 25:402–408

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Lu Z, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10:333–339

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Martínez-Force E, Cantisán S, Serrano-Vega MJ, Garcés R (2000) Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds. Planta 211:673–678

    PubMed  Article  PubMed Central  Google Scholar 

  25. Mayer KM, Shanklin J (2005) A structural model of the plant acyl-acyl carrier protein thioesterase FatB comprises two helix/4-stranded sheet domains, the N-terminal domain containing residues that affect specificity and the C-terminal domain containing catalytic residues. J Biol Chem 280:3621–3627

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Mekhedov S, de Ilarduya OM, Ohlrogge J (2000) Toward a functional catalog of the plant genome: a survey of genes for lipid biosynthesis. Plant Physiol 122:389–402

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Article  Google Scholar 

  28. Ohlrogge JB (1982) Fatty acid synthetase: plants and bacteria have similar organization. Trends Biochem Sci 7:386–387

    CAS  Article  Google Scholar 

  29. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Overath P, Pauli G, Schairer HU (1969) Fatty acid degradation in Escherichia coli: an inducible acyl-CoA aynthetase, the mapping of old-mutations, and the isolation of regulatory mutants. Eur J Biochem 7:559–574

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Pollard MR, Anderson L, Fan C, Hawkins DH, Davies HM (1991) A specific acyl-ACP thioesterase implicated in medium chain fatty acid production in immature cotyledons of Umbellularia californica. Arch Biochem Biophys 284:306–312

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Raffaele S, Vailleau F, Léger A, Joubès J, Miersch O, Huard C, Blée E, Mongrand S, Domergue F, Roby D (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20:752–767

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Rock CO, Garwin JL (1979) Preparative enzymatic synthesis and hydrophobic chromatography of acyl-acyl carrier protein. J Biol Chem 254:7123–7128

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Rock CO, Cronan JE (1981) Acyl-acyl carrier protein synthetase from Escherichia coli. Methods Enzymol 71:163–168

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Rock CO, Cronan JE (1996) Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochim Biophys Acta 1302:1–16

    PubMed  Article  PubMed Central  Google Scholar 

  36. Salas JJ, Ohlrogge JB (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403:25–34

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Sánchez-García A, Moreno-Pérez AJ, Muro-Pastor AM, Salas JJ, Garcés R, Martínez-Force E (2010) Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation. Phytochemistry 71:860–869

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  38. Serrano-Vega MJ, Venegas-Calerón M, Garcés R, Martínez-Force E (2003) Cloning and expression of fatty acids biosynthesis key enzymes from sunflower (Helianthus annuus L.) in Escherichia coli. J Chromatogr B 786:221–228

    CAS  Article  Google Scholar 

  39. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    CAS  PubMed  Article  Google Scholar 

  40. Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Singh SP, Zhou XR, Liu Q, Stymne S, Green AG (2005) Metabolic engineering of new fatty acids in plants. Curr Opin Plant Biol 8:197–203

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. Sonntag NOV (1979) Composition and characteristics of individual fats and oils. In: Swern D (ed) Bailey’s industrial oil and fat products. Wiley, New York, pp 289–477

    Google Scholar 

  43. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    CAS  Article  Google Scholar 

  44. Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Voelker T (1996) Plant acyl-ACP thioesterases: chain-length determining enzymes in plant fatty acid biosynthesis. Genet Eng 18:111–133

    CAS  Article  Google Scholar 

  47. Voelker TA, Davies HM (1994) Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-ACP thioesterase. J Bacteriol 176:7320–7327

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Voelker TA, Worrell AC, Anderson L, Bleibaum J, Fan C, Hawkins DJ, Radke SE, Davies HM (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257:72–74

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. Voelker TA, Jones A, Cranmer AM, Davies HM, Knutzon DS (1997) Broad-range and binary-range acyl-acyl-carrier protein thioesterases suggest an alternative mechanism for medium-chain production in seeds. Plant Physiol 114:669–677

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. von Arnim AG, Deng XW, Stacey MG (1998) Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221:35–43

    Article  Google Scholar 

  51. Yuan L, Voelker TA, Hawkins DJ (1995) Modification of the substrate specificity of an acyl-acyl carrier protein thioesterase by protein engineering. Proc Natl Acad Sci USA 92:10639–10643

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. Yuan L, Nelson BA, Caryl G (1996) The catalytic cysteine and histidine in the plant acyl-acyl carrier protein thioesterases. J Biol Chem 271:3417–3419

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Number 31700600) and Hunan Provincial Natural Science Foundation of China (Grant Number 2019JJ40530).

Author information

Affiliations

Authors

Contributions

HC conceived and designed the study. FHZ and YW performed most of the experiments and drafted the manuscript. TX, MD and YP helped perform some experiments. HC, TX and MD helped analyze data and revise the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Hao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Danny Geelen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhang, F., Wang, Y. et al. Identification of tung tree FATB as a promoter of 18:3 fatty acid accumulation through hydrolyzing 18:0-ACP. Plant Cell Tiss Organ Cult (2021). https://doi.org/10.1007/s11240-020-01998-w

Download citation

Keywords

  • Oil synthesis
  • Plant development
  • Acyl-ACP preference
  • Enzyme substrate