Enzymatic and nonenzymatic antioxidant systems impact the viability of cryopreserved Paeonia suffruticosa pollen

Abstract

Antioxidant systems are important defense systems in plants, and studying their response to environmental stress helps reveal the mechanisms underlying plant stress tolerance. Pollen from three Paeonia suffruticosa cultivars with significant differences in viability after cryopreservation was used to study the relationship between pollen viability and the enzymatic and nonenzymatic antioxidant systems. The pollen viabilities of one cultivar decreased after cryopreservation, one was stable and one increased. The reactive oxygen species (ROS) contents were significantly different in the three cultivars. ROS in the cultivar with increased viability was significantly lower than in the other two cultivars. The oxidative damage indices of the malondialdehyde (MDA) and protein carbonyl (PCO) contents were significantly lower in the cultivar with increased viability than the other two cultivars while the superoxide dismutase (SOD) activity was higher. The difference in the peroxidase (POD), catalase (CAT), ascorbic acid peroxidase (APX), and glutamate reductase (GR) activities was not significant. SOD activity was significantly correlated with the MDA and POD contents. In the cultivar with increased viability, ascorbic acid (AsA) was lower than in the other two cultivars and glutathione (GSH) was higher. AsA was significantly positively correlated with the MDA and PCO contents, while GSH was significantly negatively correlated. This indicated that the membrane lipid and protein oxidative damage caused by ROS was a major cause of the decrease in pollen viability after cryopreservation. SOD, AsA and GSH effectively maintained the internal balance of oxidative metabolism and reduced the levels of oxidative damage, thus ensuring pollen viability.

Key message

After cryopreservation, pollen viability showed different changes, enzymatic and non-enzymatic antioxidant systems plays an important in viability difference through effect on the ROS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ajuwon OR, Bada BS, Olujimi OO (2010) Growth and antioxidative responses to excess cadmium in kenaf (Hibiscus cannabinus L.). Fresenius Environ Bull 19:2637–2643. https://doi.org/10.1007/978-90-481-9558-9_10

    CAS  Article  Google Scholar 

  2. Antony JJJ, Keng CL, Mahmood M, Subramaniam S (2013) Effects of ascorbic acid on PVS2 cryopreservation of Dendrobium Bobby Messina’s PLBs supported with SEM analysis. Appl Biochem Biotechnol 171:315–329. https://doi.org/10.1007/s12010-013-0369-x

    CAS  Article  PubMed  Google Scholar 

  3. Alba V, Bisignano V, Alba E, De Stradis A, Polignano GB (2011) Effects of cryopreservation on germinability of olive (Olea europaea L.) pollen. Genet Resour Crop Evol 58:977–982. https://doi.org/10.1007/s10722-011-9736-z

    Article  Google Scholar 

  4. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    CAS  Article  PubMed  Google Scholar 

  5. Barnabas B (1983) Freeze preservation of pollen. Les Colloq de l’INRA 21:429–433

    Google Scholar 

  6. Baust JM, Van Buskirk R, Baust JG (2002) Gene activation of the apoptotic caspase cascade following cryogenic storage. Cell Preserv Technol 1:63–80. https://doi.org/10.1089/15383440260073301

    CAS  Article  Google Scholar 

  7. Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257. https://doi.org/10.1093/jxb/ert430

    CAS  Article  PubMed  Google Scholar 

  8. Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    CAS  Article  Google Scholar 

  9. Chen GQ, Ren L, Zhang J, Reed BM, Zhang D, Shen XH (2015) Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Cryobiology 70:38–47. https://doi.org/10.1016/j.cryobiol.2014.11.004

    CAS  Article  PubMed  Google Scholar 

  10. Di W, Jia MX, Xu J, Li BL, Liu Y (2017) Exogenous catalase and pyruvate dehydrogenase improve survival and regeneration and affect oxidative stress in cryopreserved Dendrobium nobile protocorm-like bodies. CryoLetters 28:228–238

    Google Scholar 

  11. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95. https://doi.org/10.1152/physrev.00018.2001

    Article  PubMed  Google Scholar 

  12. Fang JY, Wetten A, Johnston J (2008) Headspace volatile markers for sensitivity of cocoa (Theobroma cacao L.) somatic embryos to cryopreservation. Plant Cell Rep 27:453–461. https://doi.org/10.1007/s00299-007-0487-4

    CAS  Article  PubMed  Google Scholar 

  13. Feng Z, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu J (2010) Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. Environ Pollut 158:3539–3545. https://doi.org/10.1016/j.envpol.2010.08.019

    CAS  Article  PubMed  Google Scholar 

  14. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875. https://doi.org/10.1105/tpc.105.033589

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Plant Physiol 92:696–717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x

    CAS  Article  Google Scholar 

  16. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    CAS  Article  PubMed  Google Scholar 

  17. Gilroy S, Bialasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R (2016) ROS, calcium and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606–1615. https://doi.org/10.1104/pp.16.00434

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Gogorcena Y, Iturbe-Omaetxe I, Escuredo PR, Becana M (1995) Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. Plant Physiol 108:753–759

    CAS  Article  Google Scholar 

  19. Gupta MK, Uhm SJ, Lee HT (2010) Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil Steril 93:2602–2607. https://doi.org/10.1016/j.fertnstert.2010.01.043

    Article  PubMed  Google Scholar 

  20. Imahori Y, Takemura M, Bai J (2008) Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biol Technol 49:54–60. https://doi.org/10.1016/j.postharvbio.2007.10.017

    CAS  Article  Google Scholar 

  21. Jia MX, Shi Y, Di W, Jiang XR, Xu J, Liu Y (2017) ROS-induced oxidative stress is closely related to pollen deterioration following cryopreservation. In Vitro Cell Dev Biol Plant 53:433–439. https://doi.org/10.1007/s11627-017-9844-3

    CAS  Article  Google Scholar 

  22. Jia MX, Jiang XR, Xu J, Di W, Shi Y, Liu Y (2018) CAT and MDH improve the germination and alleviate the oxidative stress of cryopreserved Paeonia and Magnolia pollen. Acta Physiol Plant 40:37–47. https://doi.org/10.1007/s11738-018-2612-0

    CAS  Article  Google Scholar 

  23. Jiang XR, Di W, Jia MX, Li ZD, Ren RF, Xu J, Li BL, Liu Y (2019) MDH and CAT increase the germination of cryopreserved Paeonia pollen by regulating the ROS and apoptosis-like events. Acta Hortic 1234:105–112. https://doi.org/10.17660/ActaHortic.2019.1234.13

    Article  Google Scholar 

  24. Kampfenkel K, Montagu MV, Inzé D (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225:165–167. https://doi.org/10.1006/abio.1995.1127

    CAS  Article  PubMed  Google Scholar 

  25. Li HS, Sun Q, Zhao SJ, Zhang WH (2000) Assay of malondialdehyde in plants. Experiment principle and technology of plant physiology and biochemistry. Higher Education Press, Beijing, pp 260–261 (in Chinese)

    Google Scholar 

  26. Luza JG, Polito VS (1985) In vitro germination and storage of English walnut pollen. Sci Hortic (Amst) 27:303–316

    Article  Google Scholar 

  27. Mathew L, Burritt DJ, McLachlan A, Pathiran R (2019) Combined pre-treatments enhance antioxidant metabolism and improve survival of cryopreserved kiwifruit shoot tips. Plant Cell Tissue Organ Cult 138:193–205. https://doi.org/10.1007/s11240-019-01617-3

    CAS  Article  Google Scholar 

  28. Meyer AJ (2008) The integration of glutathione homeostasis and redox signalling. J Plant Physiol 165:1390–1403. https://doi.org/10.1016/j.jplph.2007.10.015

    CAS  Article  PubMed  Google Scholar 

  29. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

    CAS  Article  PubMed  Google Scholar 

  30. Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591. https://doi.org/10.1146/annurev.arplant.52.1.561

    CAS  Article  PubMed  Google Scholar 

  31. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481. https://doi.org/10.1146/annurev.arplant.58.032806.103946

    CAS  Article  PubMed  Google Scholar 

  32. Moran JF, Becana M, Iturbe-Omaetxe I (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352. https://doi.org/10.1007/bf00197534

    CAS  Article  Google Scholar 

  33. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    CAS  Article  Google Scholar 

  34. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. https://doi.org/10.1146/annurev.arplant.49.1.249

    CAS  Article  PubMed  Google Scholar 

  35. Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771. https://doi.org/10.1016/s0168-9452(01)00462-9

    CAS  Article  Google Scholar 

  36. Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202. https://doi.org/10.1016/j.jplph.2004.01.013

    CAS  Article  Google Scholar 

  37. Reed BM (eds.) (2008) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  38. Ren RF, Jiang XR, Di W, Li ZD, Li BL, Xu J, Liu Y (2019) HSP70 improves the viability of cryopreserved Paeonia lactiflora pollen by regulating oxidative stress and apoptosis-like programmed cell death events. Plant Cell Tissue Organ Cult 139:53–64. https://doi.org/10.1007/s11240-019-01661-z

    CAS  Article  Google Scholar 

  39. Ren RF, Li ZD, Li BL, Xu J, Jiang XR, Liu Y, Zhang KY (2019) Changes of pollen viability of ornamental plants after long-term preservation in a cryopreservation pollen bank. Cryobiology 89:14–20. https://doi.org/10.1016/j.cryobiol.2019.07.001

    Article  PubMed  Google Scholar 

  40. Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366. https://doi.org/10.1104/pp.106.079129

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Rodrigo-Moreno A, Poschenrieder C, Shabala S (2013) Transition metals: a double edge sward in ROS generation and signaling. Plant Signal Behav 8:e23245. https://doi.org/10.4161/psb.23425

    CAS  Article  Google Scholar 

  42. Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12. https://doi.org/10.2307/4274927

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Shacter E (2000) Protein oxidative damage. Methods Enzymol 319:428–436. https://doi.org/10.1016/S0076-6879(00)19040-8

    CAS  Article  PubMed  Google Scholar 

  44. Smirnoff N, Arnaud D (2018) Hydrogen peroxide metabolism and functions in plants. N Phytol 221:1–18. https://doi.org/10.1111/nph.15488

    CAS  Article  Google Scholar 

  45. Sparks D, Yates IE (2002) Pecan pollen stored over a decade retains viability. HortScience 37:176–177. https://doi.org/10.21273/HORTSCI.37.1.176

    Article  Google Scholar 

  46. Uchendu EE, Leonard SW, Traber MG, Reed BM (2010) Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep 29:25–35. https://doi.org/10.1007/s00299-009-0795-y

    CAS  Article  PubMed  Google Scholar 

  47. Uchendu EE, Muminova M, Gupta S, Reed BM (2010) Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips. In Vitro Cell Dev Biol Plant 46:386–393. https://doi.org/10.1007/s11627-010-9292-9

    CAS  Article  Google Scholar 

  48. Wang AG, Luo GM (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun 6:55–57 (in Chinese )

    CAS  Google Scholar 

  49. Wen B, Wang RL, Cheng HY, Song SQ (2010) Cytological and physiological changes in orthodox maize embryos during cryopreservation. Protoplasma 239:57–67. https://doi.org/10.1007/s00709-009-0083-2

    Article  PubMed  Google Scholar 

  50. Wen B, Cai CT, Wang RL, Song SQ, Song JL (2012) Cytological and physiological changes in recalcitrant Chinese fan palm (Livistona chinensis) embryos during cryopreservation. Protoplasma 249:323–335. https://doi.org/10.1007/s00709-011-0283-4

    CAS  Article  PubMed  Google Scholar 

  51. Whitaker C, Beckett RP, Minibayeva FV, Kranner I (2010) Production of reactive oxygen species in excised, desiccated and cryopreserved explants of Trichilia dregeana Sond. S Afr J Bot 76:112–118. https://doi.org/10.1016/j.sajb.2009.09.008

    CAS  Article  Google Scholar 

  52. Xu J, Liu Q, Jia MX, Liu Y, Li BL, Shi Y (2014) Generation of reactive oxygen species during cryopreservation may improve Lilium × siberia pollen viability. In Vitro Cell Dev Biol Plant 50:369–375. https://doi.org/10.1007/s11627-014-9615-3

    CAS  Article  Google Scholar 

  53. Zhang P, Omaye ST (2000) β-Carotene and protein oxidation effect of ascorbic acid and a-tocopherol. Toxicology 146:37–47. https://doi.org/10.1016/S0300-483X(00)00160-8

    CAS  Article  PubMed  Google Scholar 

  54. Zhang YL, Chen RD, Huang CJ, Liu Y (2009) Cryo-banking of Prunus mume pollen and its application in cross-breeding. CryoLetters 30:165–170

    CAS  PubMed  Google Scholar 

  55. Zhang D, Ren L, Chen GQ, Zhang J, Reed BM, Shen XH (2015) ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox. Plant Cell Rep 34:1499–1513. https://doi.org/10.1007/s00299-015-1802-0

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 31370693 and 31770741). We thank Professor Barbara M. Reed for editing the manuscript.

Author information

Affiliations

Authors

Contributions

RR designed the research, analyzed the data and drafted the manuscript. ZL designed the research and completed the experiment. RR and ZL contributed equally to this work. LZ and HZ offered some help on material collection. XJ offered some help on the research design. YL conceived the project, supervised the analysis and critically revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Ranjith Pathirana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLSX 106 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, R., Li, Z., Zhang, L. et al. Enzymatic and nonenzymatic antioxidant systems impact the viability of cryopreserved Paeonia suffruticosa pollen. Plant Cell Tiss Organ Cult 144, 233–246 (2021). https://doi.org/10.1007/s11240-020-01794-6

Download citation

Keywords

  • Conservation
  • Reactive oxygen species
  • Oxidative damage
  • Viability
  • Stress