Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 135, Issue 3, pp 515–522 | Cite as

Endophytic bacteria isolated from wild jojoba [Simmondsia chinensis L. (Schneider)] roots improve in vitro propagation

  • E. Perez-Rosales
  • L. Alcaraz-MeléndezEmail author
  • M. E. Puente
  • R. Vázquez-Juárez
  • T. Zenteno-Savín
  • E. Morales-Bojórquez
Original Article


Endophytic bacteria promote plant growth, reduce stress caused by biotic and abiotic factors, and can trigger active defense reactions in plants. This study aimed to evaluate enzyme activity of in vitro jojoba (Simmondsia chinensis) plants inoculated with endophytic bacteria. In vitro shoots of female and male plants were inoculated with strains of Azospirillum brasilense (Cd), Methylobacterium aminovorans (JRR11), Rhodococcus pyridinivorans (JRR22) or co-inoculated with a mixture of JRR11 + JRR22. A total of 10 treatments were performed to evaluate shoot and root length; changes in key enzymes involved in plant defense (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and phenylalanine ammonia lyase) after post-inoculation (45 days). All endophytic bacteria strains used promoted plant growth and rhizogenesis. Differences were found in enzyme activity between female and male plants. The plants inoculated with JRR22 strain, showed the highest enzyme activity suggesting an induced systemic response and a potential increase in plant resistance to pathogen attack.


Methylobacterium aminovorans Rhodococcus pyridinivorans Chlorophyll Carotenoids Catalase Peroxidase Superoxide dismutase 



Centro de Investigaciones Biológicas del Noroeste S.C. (CIBNOR) staff Norma Ochoa-Alvarez of the Microbiological Diagnostic Laboratory; Margarito Rodriguez-Alvarez and Sergio Real-Cosio of the Plant Biotechnology Laboratory; Orlando Lugo–Lugo and Norma O. Olguín-Monroy of the Oxidative Stress Laboratory for technical support provided in this study; and Diana Fischer for English edition. The authors would like to acknowledge the Plant Tissue Culture Laboratory (CULTEV) at Universidad Nacional de Luján, Argentina for providing A. brasilense Cd strains.

Author contributions

EPR developed the experiments and analysis. LAM director and advisor of the experiments and results. MEP microbiology advisor. RVJ genetic analysis advisor. TZS enzymatic analysis advisor. EMB statistical analysis advisor.


The authors of this study thank Consejo Nacional de Ciencia y Tecnología (CONACYT) for scholarship No 331467. This work was supported by Sistema Nacional de Inspección y Certificación de Semillas y Sistema Nacional de Recursos Fitogenéticos (SNICS-SINAREFI) under the Jojoba Net project BEI-JOJ-13-4.SNICS-SINAREFI-BEI-JOJ-13-4.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abitha B, Manoharan-Melvin J, Balathandayutham K, Tongmin S, Chandrasekaran R (2014) Role of Achromobacter xylosoxidans AUM54 in micropropagation of endangered medicinal plant Naravelia zeylanica (L.) DC. J Plant Growth Regul 33:202–213CrossRefGoogle Scholar
  2. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  3. Al-Hamamre Z, Al-Salaymeh A (2014) Physical properties of (jojoba oil + biodiesel), (jojoba oil + diesel) and (biodiesel + diesel) blends. Fuel 123:175–188CrossRefGoogle Scholar
  4. Aly MA, Amer EA, Al-Zayadneh WA, Negm-Eldin AE (2008) Growth regulators influence the fatty acid profiles of in vitro induced jojoba somatic embryos. Plant Cell Tissue Organ Cult 93:107–114CrossRefGoogle Scholar
  5. Andressen D, Manoochehri I, Carletti S, Llorente B, Tacoronte M, Vielma M (2009) Optimization of the in vitro proliferation of jojoba [Simmondsia chinensis (Link) Schn.] by using rotable central composite design and inoculation with rhizobacteria. Bioagro 21:41–48Google Scholar
  6. Baqir-Hussain M, Ahmad-Zahir Z, Naeem-Asghar H, Asgher M (2014) Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat? Int J Agric Biol 16:3–13Google Scholar
  7. Benson A, Joe MM, Karthikeyan B, Sa T, Rajasekaran C (2014) Role of Achromo-bacter xylosoxidans AUM54 in micropropagation of endangered medicinal plant Naravelia zeylanica (L.) DC. J Plant Growth Regul 33:202–213CrossRefGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  9. Carletti SM, Llorente BE, Cáceres EA, Tandecarz J (1998) Jojoba inoculation with Azospirillum brasilense stimulates in vitro root formation. Plant Tissue Cult Biotechnol 4:165–174Google Scholar
  10. Daros-Salla T, Ramos da Silva T, Vieira-Astarita L, Romanato-Santarém E (2014) Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants. Plant Physiol Biochem 85:14–20CrossRefGoogle Scholar
  11. El-Deeb B, Fayez K, Gherbawy Y (2013) Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J Plant Interact 8:56–64CrossRefGoogle Scholar
  12. Fedorov DN, Ekimov GA, Doronina NV, Trotsenko YA (2013) 1-Aminocyclopropane-1-carboxylate (ACC) deaminases from Methylobacterium radiotolerans and Methylobacterium nodulans with higher specificity for ACC. FEMS Microbiol Lett 343:70–76CrossRefGoogle Scholar
  13. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefGoogle Scholar
  14. Gentry HS (1958) The natural history of Jojoba (Simmondsia chinensis) and its cultural aspects. Econ Bot 12(3):261–295CrossRefGoogle Scholar
  15. Giri DD, Kumar A, Shukla PN, Singh R, Singh PK, Deo-Pandey K (2013) Salt stress tolerance of methylotrophic bacteria Methylophilus sp. and Methylobacterium sp. isolated from coal mine spoils. Pol J Microbiol 62:273–280PubMedGoogle Scholar
  16. Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Won-Park S (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258CrossRefGoogle Scholar
  17. Ibáñez SG, Merini LJ, Barros GG, Medina MI, Agostini E (2014) Vicia sativa-rhizospheric bacteria interactions to improve phenol remediation. Int J Environ Sci Technol 11:1679–1690CrossRefGoogle Scholar
  18. Indiragandhi P, Anandham R, Kim K, Yim W, Madhaiyan M, Sa T (2008) Induction of defense responses in tomato against Pseudomonas syringae pv. tomato by regulating the stress ethylene level with Methylobacterium oryzae CBMB20 containing 1-aminocyclopropane-1-carboxylate deaminase. World J Microbiol Biotechnol 24:1037–1045CrossRefGoogle Scholar
  19. Jain S, Kumar-Choudhary D (2014) Induced defense–related proteins in soybean (Glycine max L. Merrill) plants by Carnobacterium sp. SJ–5 upon challenge inoculation of Fusarium oxysporum. Planta 239:1027–1040CrossRefGoogle Scholar
  20. Jain A, Singh A, Singh S, Bahadur-Singh S (2013) Microbial consortium-induced changes in oxidative stress markers in pea plants challenged with Sclerotinia sclerotiorum. J Plant Growth Regul 32:388–398CrossRefGoogle Scholar
  21. Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chil J Agric Res 73:213–219CrossRefGoogle Scholar
  22. Kumar S, Singh N, Mangal M, Dhawan AK (2012) Biotechnological advances in jojoba [Simmondsia chinensis (Link) Schneider]: recent developments and prospects for further research. Plant Biotechnol Rep 6:97–106CrossRefGoogle Scholar
  23. Larraburu E, Llorente B (2015) Azospirillum brasilense enhances in vitro rhizogenesis of Handroanthus impetiginosus (pink lapacho) in different culture media. Ann For Sci 72:219–229CrossRefGoogle Scholar
  24. Larraburu EE, Llorente BE, Apóstolo NM (2010) Anatomy and morphology of photinia (Photinia X 3 fraseri Dress) in vitro plants inoculated with rhizobacteria. Trees 24:635–642CrossRefGoogle Scholar
  25. Llorente BE, Apóstolo NM (2013) In vitro propagation of Jojoba. In: Lambardi M, Ozudogru EA, Jain SM (eds) Protocols for micropropagation of selected economically-important horticultural plants, methods in molecular biology. Springer, Berlin, pp 19–31 CrossRefGoogle Scholar
  26. Megala S, Paranthaman (2017) Effect on the plant growth promoting rhizobacteria (PGPR) increasing plant height, chlorophyll and protein content of Solanum nigrum. Int J Appl Res 3:147–150Google Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  28. Nagendran K, Karthikeyan G, Mohammed-Faisal P, Kalaiselvi P, Raveendra M, Prabakar K, Raguchander T (2014) Exploiting endophytic bacteria for the management of sheath blight disease in rice. Biol Agric Hortic 30:8–23CrossRefGoogle Scholar
  29. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
  30. Orlikowska T, Nowak K, Reed B (2017) Bacteria in the plant tissue culture environment. Plant Cell Tissue Organ Cult 128:487–508CrossRefGoogle Scholar
  31. Paynet M, Martin C, Girand M (1971) Activité phenylalanine ammonia lyase et hypersensibilite au virus de la mosaique du tabac. Académie des Sciences, Paris, pp 537–539Google Scholar
  32. Perez-Rosales E, Alcaraz-Meléndez L, Puente ME, Vázquez-Juárez R, Quiroz-Guzmán E, Zenteno-Savín T, Morales-Bojórquez E (2017) Isolation and characterization of endophytic bacteria associated with roots of jojoba [Simmondsia chinensis (Link) Schneid]. Curr Sci 112(2):1–6Google Scholar
  33. Perveen S, Anis M, Aref IM (2013) Lipid peroxidation, H2O2 content, and antioxidants during acclimatization of Abrus precatorius to ex vitro conditions. Biol Plant 57(3):417–424CrossRefGoogle Scholar
  34. Suzuki K (2000) Measurement of Mn-SOD and Cu, Zn-SOD. In: Taniguchi N, Gutteridge J (eds) Experimental protocols for reactive oxygen and nitrogen species. Oxford University Press, New York, pp 91–95Google Scholar
  35. Ting SY, Meon S, Kadir J, Radu S, Singh G (2010) Induction of host defense enzymes by the endophytic bacterium Serratia marcescens, in banana plantlets. Intern J Pest Manag 56:183–188CrossRefGoogle Scholar
  36. Zhao K, Penttinen P, Guan T, Xiao J, Chen Q, Xu J, Lindstrom K, Zhang L, Zhang X, Strobel GA (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China. Curr Microbiol 62:182–190CrossRefGoogle Scholar
  37. Zhou WJ, Leul M (1999) Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul 27:99–104CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Agricultura en Zonas Áridas, Centro de Investigaciones Biológicas del Noroeste, S. C., Instituto Politécnico Nacional 195La PazMexico
  2. 2.Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, S. C., Instituto Politécnico Nacional 195La PazMexico
  3. 3.Acuicultura, Centro de Investigaciones Biológicas del Noroeste, S. C., Instituto Politécnico Nacional 195La PazMexico
  4. 4.Ecología Pesquera, Centro de Investigaciones Biológicas del Noroeste, S. C., Instituto Politécnico Nacional 195La PazMexico

Personalised recommendations