Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 135, Issue 3, pp 367–379 | Cite as

Quality and intensity of light affect Lippia gracilis Schauer plant growth and volatile compounds in vitro

  • Luiz Eduardo Santos Lazzarini
  • Suzan Kelly Vilela Bertolucci
  • Fernanda Ventorim Pacheco
  • Jaqueline dos Santos
  • Sâmia Torres Silva
  • Alexandre Alves de Carvalho
  • José Eduardo Brasil Pereira PintoEmail author
Original Article


The aim of this study was to evaluate the effects of different intensities and quality of light and explant type on the growth of and volatile compounds in Lippia gracilis in vitro. The treatments were as follows: light intensities of 26, 51, 69, 94, or 130 µmol m−2 s−1 from fluorescent lamps and light-emitting diode (LED) lamps at different wavelengths, namely, white, red, blue, and combinations of red and blue light at ratios of 2.5:1 and 1:2.5, respectively, and two explant types, namely, nodal and apical segments. On the 30th day of culture on half-strength Murashige and Skoog (Physiol Plant 15(3):473–497, 1962) medium, growth, production of photosynthetic pigments, chlorophyll a and b, total chlorophyll, carotenoids, and volatile constituents (using headspace gas chromatography-mass spectrometry) were analyzed. The light quality and intensity significantly influenced the in vitro growth of L. gracilis. The apical segments were superior in all parameters evaluated compared to nodal segments. The number of segments plantlet−1, root length, and leaf, shoot, root, and total weight were higher with increasing light intensity, especially under the 94 µmol m−2 s−1 treatment, for both explant types. The red light showed the highest leaf (32.28 mg plantlet−1) and total (58.33 mg plantlet−1) dry weight of all the light qualities. Major constituents, namely, ρ-cymene, γ-terpinene, thymol, carvacrol, and E-caryophyllene, were identified, regardless of light conditions. The amount and composition of volatile compounds varied according to light intensity and quality. Low intensity (26 µmol m−2 s−1) increased γ-terpinene content (12.42%) and concomitantly decreased carvacrol (38.52%). Blue LED light showed higher production of carvacrol (48.11%).


Irradiances Light spectrum Secondary metabolites Medicinal plant Photosynthetic pigments LEDs 



Gas chromatography-mass spectrometry


Light emitting diodes






Murashige and Skoog medium


Photosynthetic photon flux density



The authors would like to thank the National Council for Scientific and Technological Development (CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico), the Coordination for the Improvement of Higher Education Personnel (CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and the Minas Gerais State Research Foundation (FAPEMIG—Fundação de Pesquisa do Estado de Minas Gerais) for financial support (scholarships and research grants).

Author contributions

The following declarations about authors contributions to the research have been made: concept of the study: JEBPP, SKVB; Intensity and LED light system—design and settings: LESL, JEBPP; laboratory research: LESL, JS, STS; statistical analyses: AAC, LESL, JEBPP, SKVB; writing of the manuscript LESL, SKVB, JEBPP, FVP.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.


  1. Adams RP (2017) Identification of essential oil components by gas chromatography/mass spectrometry. 5 online ed. Texensis PublishingGoogle Scholar
  2. Albuquerque CCd, Camara TR, Mariano RdLR, Willadino L, Marcelino Júnior C, Ulisses C (2006) Antimicrobial action of the essential oil of Lippia gracilis Schauer. Braz Arch Biol Technol 49(4):527–535. CrossRefGoogle Scholar
  3. Alone LB, Albuquerque MMS, Resende SV, Carneiro CE, Santana JRF (2016) Rustificação in vitro em diferentes ambientes e aclimatização de microplantas de Comanthera mucugensis Giul. subsp. mucugensis. Rev Ciênc Agron 47:152–161. CrossRefGoogle Scholar
  4. Alvarenga ICA, Pacheco FV, Silva ST, Bertolucci SKV, Pinto JEBP (2015) In vitro culture of Achillea millefolium L.: quality and intensity of light on growth and production of volatiles. Plant Cell Tissue Organ Cult 122(2):299–308. CrossRefGoogle Scholar
  5. Andrade HB, Braga AF, Bertolucci SKV, Hsie BS, Silva ST, Pinto JEBP (2017) Effect of plant growth regulators, light intensity and LED on growth and volatile compound of Hyptis suaveolens (L.) Poit in vitro plantlets. Acta Hortic 1155:277–284. CrossRefGoogle Scholar
  6. Bello JJB, Estrada EM, Velázquez JHC, Ramos VM (2016) Effect of LED light quality on in vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). Afr J Biotechnol 15(8):272–277. CrossRefGoogle Scholar
  7. Chandra S, Bandopadhyay R, Kumar V, Chandra R (2010) Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnol Lett 32(9):1199–1205. CrossRefPubMedGoogle Scholar
  8. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20. CrossRefPubMedGoogle Scholar
  9. Chung J-P, Huang C-Y, Dai T-E (2010) Spectral effects on embryogenesis and plantlet growth of Oncidium ‘Gower Ramsey’. Sci Hortic 124:511–516. CrossRefGoogle Scholar
  10. Crocoll C (2011) Biosynthesis of the phenolic monoterpenes, thymol and carvacrol, by terpene synthases and cytochrome P450s in oregano and thyme. Friedrich-Schiller-Universität, JenaGoogle Scholar
  11. Crocoll C, Asbach J, Novak J, Gershenzon J, Degenhardt J (2010) Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Mol Biol 73(6):587–603. CrossRefPubMedGoogle Scholar
  12. Cruz EMdO, Costa-Junior LM, Pinto JAO, Santos DdA, Araujo SAd, Arrigoni-Blank MdF, Bacci L, Alves PB, Cavalcanti SCdH, Blank AF (2013) Acaricidal activity of Lippia gracilis essential oil and its major constituents on the tick Rhipicephalus (Boophilus) microplus. Vet Parasitol 195(1):198–202. CrossRefPubMedGoogle Scholar
  13. Dong C, Fu Y, Liu G, Liu H (2014) Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. J Agron Crop Sci 200(3):219–230. CrossRefGoogle Scholar
  14. Dutta-Gupta S, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211–220. CrossRefGoogle Scholar
  15. Engel VL, Poggiani F (1991) Estudo da concentração de clorofila nas folhas e seu espectro de absorção de luz em função do sombreamento em mudas de quatro espécies florestais nativas. Revista Brasileira de Fisiologia Vegetal 3(1):39–45Google Scholar
  16. Fernandes VF, Almeida LBd, Feijó EVRdS, Silva DdC, Oliveira RAd, Mielke MS, Costa LCdB (2013) Light intensity on growth, leaf micromorphology and essential oil production of Ocimum gratissimum. Revista Brasileira de Farmacognosia 23(3):419–424. CrossRefGoogle Scholar
  17. Ferraz RPC, Bomfim DS, Carvalho NC, Soares MBP, da Silva TB, Machado WJ, Prata APN, Costa EV, Moraes VRS, Nogueira PCL, Bezerra DP (2013) Cytotoxic effect of leaf essential oil of Lippia gracilis Schauer (Verbenaceae). Phytomedicine 20(7):615–621. CrossRefPubMedGoogle Scholar
  18. Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciência e agrotecnologia 35(6):1039–1042CrossRefGoogle Scholar
  19. Gomes SVF, Nogueira PCL, Moraes VRS (2011) Aspectos químicos e biológicos do gênero Lippia enfatizando Lippia gracilis. Schauer Eclética Química 36(1):64–77. CrossRefGoogle Scholar
  20. Hartikainen K, Nerg A-M, Kivimäenpää M, Kontunen-soppela S, Mäenpää M, Oksanen E, Rousi M, Holopainen T (2009) Emissions of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature. Tree Physiol 29(9):1163–1173. CrossRefPubMedGoogle Scholar
  21. Heo JW, Lee CW, Paek KY (2006) Influence of mixed LED radiation on the growth of annual plants. J Plant Biol 49(4):286–290. CrossRefGoogle Scholar
  22. Holopainen JK (2011) Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds? Tree Physiol 31(12):1356–1377. CrossRefPubMedGoogle Scholar
  23. Hung CD, Hong C-H, Kim S-K, Lee K-H, Park J-Y, Nam M-W, Choi D-H, Lee H-I (2016) LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiol Plant. CrossRefGoogle Scholar
  24. Jensen K, Jensen PE, Møller BL (2011) Light-driven cytochrome P450 hydroxylations. ACS Chem Biol 6(6):533–539. CrossRefPubMedGoogle Scholar
  25. Jeong BR, Sivanesan I (2015) Direct adventitious shoot regeneration, in vitro flowering, fruiting, secondary metabolite content and antioxidant activity of Scrophularia takesimensis Nakai. Plant Cell Tissue Organ Cult 123(3):607–618. CrossRefGoogle Scholar
  26. Jo E-A, Tewari RK, Hahn E-J, Paek K-Y (2008) Effect of photoperiod and light intensity on in vitro propagation of Alocasia amazonica. Plant Biotechnol Rep 2(3):207–212. CrossRefGoogle Scholar
  27. Kerbauy GB, Chaer L (2011) Micropropagação comercial de orquídeas conquistas, desafios e perspectivas. Biofábrica de plantas: produção industrial de plantas in vitro 1:177–205Google Scholar
  28. Larcher W (2006) Ecofisiologia vegetal. RIMA Artes e Textos, São CarlosGoogle Scholar
  29. Lee S-H, Tewari R, Hahn E-J, Paek K (2007) Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania somnifera (L.) Dunal. plantlets. Plant Cell Tiss Organ Cult 90:141–151. CrossRefGoogle Scholar
  30. Li H, Tang C, Xu Z (2013) The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Sci Hortic 150:117–124. CrossRefGoogle Scholar
  31. Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Anal Chem (New York). CrossRefGoogle Scholar
  32. Lim YJ, Eom SH (2013) Effects of different light types on root formation of Ocimum basilicum L. cuttings. Sci Hortic 164:552–555. CrossRefGoogle Scholar
  33. Liu M, Xu Z, Guo S, Tang C, Liu X, Jao X (2014) Evaluation of leaf morphology, structure and biochemical substance of balloon flower (Platycodon grandiflorum (Jacq.) A. DC.) plantlets in vitro under different light spectra. Sci Hortic 174:112–118. CrossRefGoogle Scholar
  34. López AB, Paz AR, Trejo C, Rangel EE, Rodríguez JL (2015) Improved in vitro rooting and acclimatization of Capsicum chinense Jacq. plantlets. In Vitro Cell Dev Biol—Plant 51(3):274–283. CrossRefGoogle Scholar
  35. Lorenzi H, Matos FJ (2002) Plantas medicinais no Brasil: nativas e exóticas. Instituto Plantarum de Estudos da Flora, Nova OdessaGoogle Scholar
  36. Manivannan A, Soundararajan P, Halimah N, Ko CH, Jeong BR (2015) Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Hortic Environ Biotechnol 56:105-113. CrossRefGoogle Scholar
  37. Mendes SS, Bomfim RR, Jesus HCR, Alves PB, Blank AF, Estevam CS, Antoniolli AR, Thomazzi SM (2010) Evaluation of the analgesic and anti-inflammatory effects of the essential oil of Lippia gracilis leaves. J Ethnopharmacol 129(3):391–397. CrossRefPubMedGoogle Scholar
  38. Moraes-Neto S, Gonçalves J, Takaki M, Cenci S, Carlos Gonçalves J (2000) Crescimento de mudas de algumas espécies arbóreas que ocorrem na Mata Atlântica, em função do nível de luminosidade. Revista Árvore 24:35–45Google Scholar
  39. Muneer S, Kim E, Park J, Lee J (2014) Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light Intensities in lettuce leaves (Lactuca sativa L.). Int J Mol Sci 15(3):4657. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. CrossRefGoogle Scholar
  41. Murthy HN, Lee E-J, Paek K-Y (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118(1):1–16. CrossRefGoogle Scholar
  42. Neto RM, Matos FJA, Andrade VS, Melo MCNd, Carvalho CBM, Guimarães SB, Pessoa ODL, Silva SL, Silva SFR, Vasconcelos PRL (2010) O oleo essencial de Lippia gracilis Schauer, Verbenaceae, em ratos diabeticos. Revista Brasileira de Farmacognosia 20:261–266. CrossRefGoogle Scholar
  43. NIST (2008) National Institute of Standards and Technology. In: Chemistry Web Book Accessed 17 May 2017
  44. Oliveira ACL, Arrigoni-Blank MF, Blank AF, Bianchini FG (2011) Produção de mudas de dois genótipos de alecrim-de-tabuleiro (Lippia gracilis Schauer) em função de fertilizante mineral, calcário, substratos e recipientes. Revista Brasileira de Plantas Medicinais 13:35–42. CrossRefGoogle Scholar
  45. Park S-Y, Lee JG, Cho HS, Seong ES, Kim HY, Yu CY, Kim JK (2013) Metabolite profiling approach for assessing the effects of colored light-emitting diode lighting on the adventitious roots of ginseng (‘Panax ginseng’CA Mayer). Plant Omics 6(3):224Google Scholar
  46. Pascual ME, Slowing K, Carretero E, Sánchez Mata D, Villar A (2001) Lippia: traditional uses, chemistry and pharmacology: a review. J Ethnopharmacol 76(3):201–214. CrossRefPubMedGoogle Scholar
  47. Pimenta MR, Fernandes LS, Pereira UJ, Garcia LS, Leal SR, Leitão SG, Salimena FRG, Viccini LF, Peixoto PHP (2007) Floração, germinação e estaquia em espécies de Lippia L. (Verbenaceae). Braz J Bot 30:211–220. CrossRefGoogle Scholar
  48. Poncetta P, Ioratti D, Mignani I, Giongo L (2017) In vitro propagation of red raspberry under light-emitting diodes (LEDs). Acta Hortic 1155:369–374. CrossRefGoogle Scholar
  49. Poudel PR, Kataoka I, Mochioka R (2008) Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Cult 92(2):147–153. CrossRefGoogle Scholar
  50. Poulose AJ, Croteau R (1978) Biosynthesis of aromatic monoterpenes: conversion of γ-terpinene to p-cymene and thymol in Thymus vulgaris L. Arch Biochem Biophys 187(2):307–314. CrossRefGoogle Scholar
  51. Qian H, Liu T, Deng M, Miao H, Cai C, Shen W, Wang Q (2016) Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food Chem 196:1232–1238. CrossRefPubMedGoogle Scholar
  52. Ren J, Guo S, Xu C, Yang C, Ai W, Tang Y, Qin L (2014) Effects of different carbon dioxide and LED lighting levels on the anti-oxidative capabilities of Gynura bicolor DC. Adv Space Res 53(2):353–361. CrossRefGoogle Scholar
  53. Rowshan V, Bahmanzadegan A, Saharkhiz MJ (2013) Influence of storage conditions on the essential oil composition of Thymus daenensis Celak. Ind Crops Prod 49:97–101. CrossRefGoogle Scholar
  54. Sáez PL, Bravo LA, Latsague MI, Toneatti MJ, Sánchez-Olate M, Ríos DG (2013) Light energy management in micropropagated plants of Castanea sativa, effects of photoinhibition. Plant Sci 201–202:12–24. CrossRefPubMedGoogle Scholar
  55. Santos CPd, Pinto JAO, Santos CAd, Cruz EMO, Arrigoni-Blank MdF, Andrade TM, Santos DdA, Alves PB, Blank AF (2016) Harvest time and geographical origin affect the essential oil of Lippia gracilis Schauer. Ind Crops Prod 79:205–210. CrossRefGoogle Scholar
  56. Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31(2):186–207. CrossRefPubMedGoogle Scholar
  57. Silva ST, Bertolucci SKV, da Cunha SHB, Lazzarini LES, Tavares MC, Pinto JEBP (2017) Effect of light and natural ventilation systems on the growth parameters and carvacrol content in the in vitro cultures of Plectranthus amboinicus (Lour.) Spreng. Plant Cell Tissue Organ Cult (PCTOC) 129(3):501–510. CrossRefGoogle Scholar
  58. Souza AdS, Albuquerque UP, Nascimento ALBd, Santoro FR, Torres-Avilez WM, Lucena RFPd, Monteiro JM (2017) Temporal evaluation of the Conservation Priority Index for medicinal plants. Acta Botanica Brasilica 31:169–179. CrossRefGoogle Scholar
  59. Stefanaki A, Cook CM, Lanaras T, Kokkini S (2016) The Oregano plants of Chios Island (Greece): essential oils of Origanum onites L. growing wild in different habitats. Ind Crops Prod 82:107–113. CrossRefGoogle Scholar
  60. Szewczyk-Taranek B, Pawlowska B, Prokopiuk B, Zupnik M (2017) Effectiveness of LED and fluorescent light on in vitro shoot proliferation of Staphylea pinnata. International Society for Horticultural Science (ISHS), Leuven, pp 375–380Google Scholar
  61. Szopa A, Ekiert H, Szewczyk A, Fugas E (2012) Production of bioactive phenolic acids and furanocoumarins in in vitro cultures of Ruta graveolens L. and Ruta graveolens ssp. divaricata (Tenore) Gams. under different light conditions. Plant Cell Tissue Organ Cult 110(3):329–336. CrossRefGoogle Scholar
  62. Taiz L, Zeiger E, Møller IM, Murphy A (2017) Fisiologia e desenvolvimento vegetal. Artmed Editora, Porto AlegreGoogle Scholar
  63. Trouwborst G, Hogewoning SW, Kooten Ov, Harbinson J, Ieperen Wv (2016) Plasticity of photosynthesis after the ‘red light syndrome’ in cucumber. Environ Exp Bot 121:75–82. CrossRefGoogle Scholar
  64. Us-Camas R, Rivera-Solís G, Duarte-Aké F, De-la-Peña C (2014) In vitro culture: an epigenetic challenge for plants. Plant Cell Tissue Organ Cult 118(2):187–201. CrossRefGoogle Scholar
  65. van den Dool H (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11:463–471. CrossRefGoogle Scholar
  66. Whatley JM, Whatley FR (1982) A luz e a vida das plantas: temas de biologia, vol 30. EDUSP, São PauloGoogle Scholar
  67. Yamazaki J-Y (2010) Is light quality involved in the regulation of the photosynthetic apparatus in attached rice leaves? Photosynth Res 105(1):63–71. CrossRefPubMedGoogle Scholar
  68. Yuichi T, Kazuya M, Takashi S, Yoshinori T (2002) Blue light specific and differential expression of a plastid σ factor, Sig5 in Arabidopsis thaliana. FEBS Lett 516(1–3):225–228. CrossRefGoogle Scholar
  69. Zhang M, Zhao D, Ma Z, Li X, Xiao Y (2009) Growth and photosynthetic capability of Momordica grosvenori plantlets grown photoautotrophically in response to light intensity. HortScience 44(3):757–763Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Luiz Eduardo Santos Lazzarini
    • 1
  • Suzan Kelly Vilela Bertolucci
    • 1
  • Fernanda Ventorim Pacheco
    • 1
  • Jaqueline dos Santos
    • 1
  • Sâmia Torres Silva
    • 1
  • Alexandre Alves de Carvalho
    • 1
  • José Eduardo Brasil Pereira Pinto
    • 1
    Email author
  1. 1.Laboratory of Tissue Culture and Medicinal Plants, Department of AgricultureFederal University of LavrasLavrasBrazil

Personalised recommendations