Skip to main content
Log in

Early expression of WUSCHEL is a marker for in vitro shoot morphogenesis in tobacco and Beta palonga

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

We have studied the role of growth regulators behind in vitro shoot organogenesis and somatic embryogenesis in two plant systems, viz. tobacco (Nicotiana tabacum L. var. Jayasri) and Beta palonga R.K. Basu & K.K. Mukh. We have also correlated the phenomena of de differentiation with the relative expression of WUS (WUSCHEL) gene in a time-dependent manner. The results indicated that early WUS gene expression is a definite marker for in vitro shoot organogenesis in tobacco and Beta both in direct and indirect modes of regeneration. Additionally, we have performed a comparative homology modeling and in silico structural analysis of WUSCHEL proteins of B. palonga, B. vulgaris, and Arabidopsis to find out the commonality of the ligand binding site. The amino acids of the binding sites were identical (Arginine, Tryptophan, Proline, Asparagine, and Tyrosine) in the three materials under study; except two additional amino acids (Isoleucine and Alanine) in B. vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bouchabke´-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, Vilaine F, Pannetier C (2013) Wuschel over expression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep 32:675–686

    Article  PubMed  CAS  Google Scholar 

  • Bouche N, Bouchez D (2001) Arabidopsis gene knockout: phenotypes wanted. Curr Opinion Plant Biol 4:111–117

    Article  CAS  Google Scholar 

  • Chatfield SP, Capron R, Severino A, Penttila P-A, Alfred S, Naha H, Provart NJ (2013) Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL dependent conversion of lateral root primordia into shoot meristems. Plant J 73:798–813

    Article  PubMed  CAS  Google Scholar 

  • Detrez C, Sangwan RS, Sangwan-Norreel BS (1989) Phenotypic and karyotypic status of Beta vulgaris plants regenerated from direct organogenesis in petiole culture. Theor Appl Genet 77:462–468

    Article  PubMed  CAS  Google Scholar 

  • Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS (2011) De novo shoot organogenesis: from art to science. Trends Plant Sci 16:597–606

    Article  PubMed  CAS  Google Scholar 

  • Gangopadhyay G, Basu S, Mukherjee BB, Gupta S (1997) Effect of salt and osmotic shocks on unadapted and adapted callus lines of tobacco. Plant Cell Tiss Org Cult 49:45–52

    Article  CAS  Google Scholar 

  • Gangopadhyay G, Bandyopadhyay T, Datta S, Basu D, Mukherjee KK (2003) Agrobacterium-mediated genetic transformation in Indian Spinach (Beta palonga). Plant Cell Biotechnol Mol Biol 4:193–196

    CAS  Google Scholar 

  • Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P et al (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548

    Article  PubMed  CAS  Google Scholar 

  • Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proceed Natl Acad Sci USA 106:16529–16534

    Article  Google Scholar 

  • Haecker A, Groß-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

    Article  PubMed  CAS  Google Scholar 

  • Holtorf H, Guitton M-C, Reski R (2002) Plant functional genomics. Naturwissenschaften. https://doi.org/10.1007/s00114-002-0321-3

    Article  PubMed  Google Scholar 

  • Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451

    Article  PubMed  CAS  Google Scholar 

  • Jönsson H, Heisler M, Reddy GV, Agrawal V, Gor V, Shapiro BE, Mjolsness E, Meyerowitz EM (2005) Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics 21:232–240. (https://doi.org/10.1093/bioinformatics/bti1036)

    Article  Google Scholar 

  • Lazim MIM, Badruzaman NA, Peng KS, Long K (2015) Quantification of cytokinins in coconut water from different maturation stages of Malaysia’s Coconut (Cocos nucifera L.) varieties. J Food Process Technol 6:515. https://doi.org/10.4172/2157-7110.1000515

    Article  CAS  Google Scholar 

  • Li W, Li Z, Zhai Y, Wang C (2015) A highly efficient castor regeneration system identified through WUSCHEL expression. Chem Eng Trans 46:1393–1398. https://doi.org/10.3303/CET1546233

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Method 25:402–408

    Article  CAS  Google Scholar 

  • Lowe K, Wu E, Wang N et al (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Shennan L, Anderson JB et al. (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39(Database issue):D225–D229

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR et al. (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43(Database issue):D222–D226

    Article  PubMed  CAS  Google Scholar 

  • Marhavy P, Bielach A, Abas L, Abuzeineh A, Duclercq J, Tanaka H, Parezova M, Petrasek J, JirıFriml J, Kleine-Vehn J, Benkova E (2011) Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21:796–804

    Article  PubMed  CAS  Google Scholar 

  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  PubMed  CAS  Google Scholar 

  • Meng WJ, Cheng ZJ, Sang YL, Zhang MM, Rong XF, Wang JW, Tang YY, Zhang XS (2017) Type-B Arabidopsis response regulators specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 29:1357–1372

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mitra S, Mukherjee KK (2001) Direct organogenesis in Indian spinach. Plant Cell Tissue Org Cult 67:191–194

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pathi KM, Tula S, Tuteja N (2013) High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium—mediated genetic transformation of tobacco. Plant Signalling Behav 8:e24354. https://doi.org/10.4161/psb.24354

    Article  CAS  Google Scholar 

  • Phillips GC (2004) In vitro morphogenesis in plants–recent advances. In Vitro Cell Dev Biol - Plant 40:342–345

    Article  CAS  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristem is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  PubMed  CAS  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp Soc Exp Biol 11:118–131

    PubMed  CAS  Google Scholar 

  • Somssich M, Je B, Simon R, Jackson D (2016) CLAVATA–WUSCHEL signaling in the shoot meristem. Development 143:3238–3248

    Article  PubMed  CAS  Google Scholar 

  • Su Y-H, Liu Y-B, Zhang X-S (2011) Auxin–cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thorpe TA (2000) Somatic embryogenesis: morphogenesis, physiology, biochemistry and molecular biology. Korean J Plant Tissue Cult 27:245–258

    Google Scholar 

  • Verdeil J-L, Hocher V, Huet C, Grosdemange F, Escoute J, Ferriere N, Nicole M (2001) Ultra structural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot 88:9–18

    Article  Google Scholar 

  • Wahl V, Brand LH, Guo Y-L, Schmid M (2010) The FANTASTIC FOUR proteins influence shoot meristem size in Arabidopsis thaliana. BMC Plant Biol 10:285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Tian C, Zhang C, Shi B, Cao X, Zhang T-Q, Zhao Z, Wang J-W, Jiao Y (2017) Cytokinin signalling activates WUSCHEL expression during axillary meristem initiation. Plant Cell 29:1373–1387

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Roy A, Zhang Y (2013a) Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Roy A, Zhang Y (2013b) BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res 41(Database issue):D1096–D1103

    PubMed  CAS  Google Scholar 

  • Yildiz M (2012) The prerequisite of the success in plant tissue culture: high frequency shoot regeneration. INTEC. https://doi.org/10.5772/51097

    Article  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform. https://doi.org/10.1186/1471-2105-9-40

    Article  Google Scholar 

  • Zhang N, Huang X, Bao Y, Wang B, Liu L, Dai L, Chen J, An X, Sun Y, Peng D (2015) Genome-wide identification and expression profiling of WUSCHEL-related homeobox (WOX) genes during adventitious shoot regeneration of watermelon (Citrullus lanatus). Acta Physiol Plant 37:224 (12 pages)

    Article  CAS  Google Scholar 

  • Zhao XY, Su YH, Cheng ZJ, Zhang XS (2008) Cell fate switch during in vitro plant organogenesis. J Integr Plant Biol 50:816–824

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the guidance and encouragement of Professor K. K. Mukherjee, Bose Institute. Authors are grateful to the Director of Bose Institute for providing financial and infrastructural support. The financial assistance in form of research fellowship provided by UGC (University Grants Commission), India is acknowledged by the first author (MS). Technical assistance of Mr. Jadab Ghosh and Mrs. Kaberi Ghosh is also duly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

MS, GG: conceived and designed the experiments. GG: performed the tissue culture experiments. MS: performed the molecular biology experiments. GG: wrote the paper.

Corresponding author

Correspondence to Gaurab Gangopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The manuscript complies with the Ethical Rules applicable for Plant Cell Tissue and Organ Culture.

Additional information

Communicated by Sergio J. Ochatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultana, M., Gangopadhyay, G. Early expression of WUSCHEL is a marker for in vitro shoot morphogenesis in tobacco and Beta palonga. Plant Cell Tiss Organ Cult 134, 277–288 (2018). https://doi.org/10.1007/s11240-018-1421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-1421-x

Keywords

Navigation