Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 133, Issue 3, pp 395–403 | Cite as

Cryopreservation of rhizome buds of Asparagus officinalis L. (cv. Morado de Huétor) and evaluation of their genetic stability

  • E. Carmona-Martín
  • J. J. Regalado
  • R. Perán-Quesada
  • C. L. Encina
Original Article


We describe an encapsulation–dehydration procedure with prefreezing steps for the cryopreservation of rhizome bud explants of Asparagus officinalis L. cv. Morado de Huétor. With this procedure, survival of Rhizome buds was at least 84 and 42% developed to complete plantlets at 8 weeks. Flow cytometry and EST-SSR molecular markers were used to assess genetic stability of the regenerated material. Effects of preculture time in a medium rich in sucrose and prefreezing treatments (0 °C or/and − 20 °C) on plant recovery were evaluated. Rhizome Buds of the “Morado de Huétor” landrace were incubated in preculture medium (MS + 0.3 M sucrose) for 48 h, encapsulated in alginate beads and desiccated until a water content of 35%, prefrozen for one hour at 0 °C plus one hour at − 20 °C, followed by cryopreservation in liquid nitrogen, and then were rewarmed and recovered in ARBM medium for 6 weeks and finally incubated in ARBM-0 for 4 weeks. Analyses of ploidy and molecular stability of plantlets recovered from cryopreserved rhizome buds of two selected genotypes showed no differences compared with the mother plants. Cryopreservation of RB explants of A. officinalis with this Encapsulation–Dehydration procedure will be useful in long-term preservation programs.


Encapsulation–dehydration Asparagus Rhizome bud Cryopreservation Molecular markers Flow cytometry 


Author contributions

All authors conceived and planned the experiments. E.C.M. performed the experiments and wrote the manuscript with input from all authors.

Compliance with ethical standards

Conflict of interest

The authors declare that the research review was conducted in the abscense of any commercial or financial relationships that could be construed as a potential conflict of interest.


  1. Araki H, Shimazaki H, Hirata Y, Oridate T, Harada T, Yakuwa T (1992) Chromosome number variation of callus cells and regenerated plants in Asparagus officinalisL. Plant Tissue Cult Lett 9:169–175CrossRefGoogle Scholar
  2. Bouman H, de Klerk GJ (1990) Cryopreservation of lily meristems. Acta Hortic 266:331–337CrossRefGoogle Scholar
  3. Carmona-Martín E, Regalado JJ, Padilla IMG, Westendorp N, Encina CL (2014) A new and efficient micropropagation method and its breeding applications in Asparagusgenera. Plant Cell Tissue Organ Cult 119:479–488CrossRefGoogle Scholar
  4. Caruso M, Federici CT, Roose ML (2008) EST-SSR markers for asparagus genetic diversity evaluation and cultivar identification. Mol Breed 21:195–204. CrossRefGoogle Scholar
  5. Castillo NRF, Bassil NV, Wada S, Reed BM (2010) Genetic stability of cryopreserved shoot tips of Rubus germplasm. In Vitro Cell Dev Biol Plant 46:246–256. CrossRefGoogle Scholar
  6. Condello E, Palombi MA, Tonelli MG, Damiano C, Caboni E (2009) Genetic stability of wild pear (Pyrus pyrasterBurgsd) after cryopreservation by encapsulation dehydration. Agric Food Sci 18:136–143CrossRefGoogle Scholar
  7. Dereuddre J, Scottez C, Arnaud Y, Duron M (1990) Effects of cold hardening on cryopreservation of axillary pear (Pyrus communisL. cv. Beurre Hardy) in vitroplantlets to dehydration and subsequent freezing in liquid nitrogen: effects of previous cold hardening. CR Acad Sci Paris 310, Ser III: 317–323Google Scholar
  8. Engelmann F, Gonzalez-Arnao MT, Wu Y, Escobar R (2008) The development of encapsulation dehydration. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, Corvallis, pp 59–75CrossRefGoogle Scholar
  9. Fabre J, Dereuddre J (1990) Encapsulation–dehydration: a new approach to cryopreservation of Solanum shoots tips. Cryo Lett 11:413–426Google Scholar
  10. Fernandes P, Rodriguez E, Pinto G, Roldán-Ruiz I, De Loose M, Santos C (2008) Cryopreservation of Quercus subersomatic embryos by encapsulation–dehydration and evaluation of genetic stability. Tree Physiol 28:1841–1850CrossRefPubMedGoogle Scholar
  11. Galbraight DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle intact plant tissues. Science 220:1049–1051CrossRefGoogle Scholar
  12. González-Benito ME, Kremer C, Ibáñez MA, Martín C (2016) Effect of antioxidants on the genetic stability of cryopreserved mint shoot tips by encapsulation–dehydration. Plant Cell Tissue Organ Cult 127:359–368CrossRefGoogle Scholar
  13. Harding K (1997) Stability of the ribosomal RNA genes in Solanum tuberosum L. plants recovered from cryopreservation. Cryo Lett 18:217–230Google Scholar
  14. Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. Cryo Lett 25:3–22Google Scholar
  15. Jitsuyama Y, Suzuki T, Harada T, Fujikawa S (2002) Sucrose incubation increases freezing tolerance of Asparagus (Asparagus officinalisL.) embryogenic cell suspensions. Cryo Lett 23:103–112Google Scholar
  16. Kohmura H, Sakai A, Chokyu S, Yakuwa T (1992) Cryopreservation of in vitro-cultured multiple bud clusters of asparagus (Asparagus officinalisL. cv. Hiroshimagreen (2n = 30) by the techniques of vitrification. Plant Cell Rep 11:433–437CrossRefPubMedGoogle Scholar
  17. Kumu Y, Harada T, Yakuwa T (1983) Development of a whole plant from a shoot tip of Asparagus officinalisL. frozen down to –196 °C. J Fac Agric Hokkaido Univ 61(3):285–294Google Scholar
  18. Kunitake H, Mii M (1998) Somatic embryogenesis and its application for breeding and micropropagation in asparagus(Asparagus officinalisL.). Plant Biotechnol 15:51–61CrossRefGoogle Scholar
  19. Kunitake H, Nakashima T, Mori K, Tanaka M (1998) Somaclonal and chromosomal effects of genotype, ploidy and culture duration in Asparagus officinalis L. Euphytica 102:309–316CrossRefGoogle Scholar
  20. Liu YG, Liu LX, Wang L, Gao AY (2008) Determination of genetic stability in surviving apple shoots following cryopreservation by vitrification. Cryo Lett 29:7–14Google Scholar
  21. Martín C, González-Benito ME (2005) Survival and genetic stability of Dendranthema grandifloraTzevelev shoot apices after cryopreservation by vitrification and encapsulation–dehydration. Cryobiology 51:281–289CrossRefPubMedGoogle Scholar
  22. Martín C, Cervera MT, González-Benito MT (2011) Genetic stability analysis of chrysanthemum (Chrysanthemum x morifoliumRamat) after different stages of an encapsulation–dehydration cryopreservation protocol. J Plant Physiol 168:158–166CrossRefPubMedGoogle Scholar
  23. Mix-Wagner G, Conner AJ, Cross RJ (2000) Survival and recovery of asparagus shoot tips after cryopreservation using the droplet method. N Z J Crop Hortic Sci 28:283–287CrossRefGoogle Scholar
  24. Moreno R, Espejo JA, Cabrera A, Millan T, Gil J (2006) Ploidic and molecular analysis of ‘Morado de Huetor’ Asparagus(Asparagus officinalisL.) population: a Spanish Tetraploid Landrace. Genet Resour Crop Evol 53:729–736. CrossRefGoogle Scholar
  25. Moreno R, Espejo JA, Cabrera A, Gil J (2008a) Origin of tetraploid cultivated asparagus landraces inferred from nrDNA ITS polymorphisms. Ann Appl Biol 153:233–241. Google Scholar
  26. Moreno R, Espejo JA, Moreno MT, Gil J (2008b) Collection and conservation of ‘Morado de Huetor’ Spanish tetraploid asparagus landrace. Genet Resour Crop Evol 55:773–777. CrossRefGoogle Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  28. Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1992) Cryopreservation of Asparagus(Asparagus officinalisL.) embryogenic cells and subsequent plant regeneration by a simple freezing method. Cryo Lett 13:379–388Google Scholar
  29. Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of Asparagus(Asparagus officinalisL.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73CrossRefGoogle Scholar
  30. Odake Y, Udagawa A, Saga H, Mii M (1993) Somatic embryogenesis of tetraploid plants from intermodal segments of a diploid cultivar of Asparagus officinalisL. grown in liquid culture. Plant Sci 94:173–177CrossRefGoogle Scholar
  31. Ozaki Y, Narikiyo K, Fujita C, Okubo H (2004) Ploidy variation of progenies from intra- and inter-ploidy crosses with regard to trisomic production in asparagus (Asparagus officinalisL.). Sex Plant Reprod 17:157–164CrossRefGoogle Scholar
  32. Panis B, Lambardi M (2005) Status of cryopreservation technologies in plants (crops and forest trees). In: The role of biotechnology for the characterization and conservation of crop, forest,animal and fishery genetic resources in developing countries. FAO, Turin, Italy, pp 43–54Google Scholar
  33. Pontaroli AC, Camadro EL (2005) Somaclonal variation in Asparagus officinalisL. plants regenerated by organogenesis from long-term callus cultures. Genet Mol Biol 28:423–430CrossRefGoogle Scholar
  34. Raimondi JP, Camadro EL, Masuelli RW (2001) Assesment of somaclonal variation in Asparagusby RAPD fingerprinting and cytogenetic analyses. Sci Hortic 90:19–29CrossRefGoogle Scholar
  35. Redenbaugh K, Paasch BD, Nichol JW, Kossler ME, Viss PR, Walker KA (1986) Somatic Seeds: Encapsulation of Asexual plant Embryos. Nat Biotechnol 4:791–801CrossRefGoogle Scholar
  36. Reed BM (1996) Pretreatment strategies for the cryopreservation of plant tissues. In: Normah MN, Narimah MK, Clyde NM (eds) In Vitroconservation of plant genetic resources. Plant Biotechnology Laboratory, Faculty of Life Sciences, University Kebangsaan, BangiGoogle Scholar
  37. Regalado JJ, Carmona-Martín E, Castro P, Moreno R, Gil J, Encina CL (2015a) Micropropagation of wild species of the genus AsparagusL. and their interspecific hybrids with cultivated A. officinalisL., and verification of genetic stability using EST-SSRs. Plant Cell Tissue Organ Cult 121:501–510CrossRefGoogle Scholar
  38. Regalado JJ, Carmona-Martín E, Moreno R, Gil J, Encina CL (2015b) Study of the somaclonal variation produced by different methods of polyploidization with colchicine in Asparagus officinalisl. Plant Cell Tissue Organ Cult 122:31–44CrossRefGoogle Scholar
  39. Saha S, Sengupta C, Ghosh P (2015) Encapsulation, short-term storage, conservation and molecular analysis to assess genetic stability in alginate-encapsulate microshoots of Ocimum kilimandscharicumGuerke. Plant Cell Tissue Organ Cult 120:519–530CrossRefGoogle Scholar
  40. Sakai A, Matsumoto T, Hirai D, Niino T (2000) Newly developed encapsulation-dehydration protocol for plant cryopreservation. Cryo Lett 21:53–62Google Scholar
  41. Suzuki T, Kaneko M, Harada T (1997) Increase in freezing resistance of excised shoots tips of Asparagus officinalisL. by preculture on sugar-rich media. Cryobiology 34:264–275CrossRefGoogle Scholar
  42. Suzuki T, Kaneko M, Harada T, Yakuwa T (1998) Enhanced formation of roots and subsequent promotion of growth of shoots on cryopreserved nodal segments of Asparagus officinalisL. Cryobiology 36:194–205CrossRefPubMedGoogle Scholar
  43. Torres AM, Weeden NF, Martin A (1993) Linkage among isozyme, RFLP and RAPD markers in Vicia Faba. Theor Appl Genet 85:935–945CrossRefGoogle Scholar
  44. Uragami A, Sakai A, Nagai M (1990) Cryopreservation of dried axillary buds plantlets of Asparagus officinalisL. grown in vitro. Plant Cell Rep 9:328–331CrossRefPubMedGoogle Scholar
  45. Wang R, Gao X, Chen L, Huo L, Li M (2014) Shoot recovery and genetic integrity of Chrysantemum morifolium shoot tips following cryopreservation by droplet-method. Sci Hortic 176 (2014):330–339CrossRefGoogle Scholar
  46. Yang HJ, Cloré WJ (1974) Development of complet plantlets from moderately vigorous shoot of stocks of Asparagusin vitro. HortScience 9:138–139Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, CSIC-UMAAlgarrobo-CostaSpain
  2. 2.Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesInstituto de Micología y Botánica, UBA-CONICET, CABABuenos AiresArgentina
  3. 3.Departamento de Biología VegetalFacultad de CienciasMálagaSpain

Personalised recommendations