Skip to main content
Log in

Cryopreservation of the Norway spruce tissue culture line able to produce extracellular lignin

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A cryopreservation method was developed for a Norway spruce (Picea abies L. Karst.) cell line characterised by highly vacuolated cells and ability to produce natural-like extracellular lignin in a cell suspension culture. Spruce callus cultured in a photoperiod of 16 h light, 8 h dark contained two types of callus morphologies. Soft callus was composed of loosely bound cells that dispersed into single cells and small cell aggregates when transferred into liquid medium. The callus with hard morphology had also cells that were more tightly attached to each other; this callus formed bigger cell aggregates in liquid medium in addition to single cells and small cell aggregates. The hard callus contained higher concentration of intracellular phenolic compounds as compared to soft callus. For cryopreservation, a vitrification method with plant vitrification solution 2 (PVS2) was used. To reduce cellular water content, spruce calli were pre-cultured on a culture medium with increasing sucrose concentration (0.2 and 0.4 M; one day on each). The cryopreservation survival rate of callus with hard morphology was significantly higher than that with soft morphology (45 ± 8% and 5 ± 5%, respectively). Pre-culturing in continuous light for several weeks led exclusively to formation of a hard-type callus, which had a survival rate of 48 ± 16% in cryopreservation. Expression of candidate genes of the monolignol biosynthesis pathway, Fourier transform infrared spectra and pyrolysis breakdown products of extracellular lignin were similar in control cultures and those originating from cryopreserved cells suggesting that cryopreservation is a feasible method for long-term storage of the lignin-forming cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CCoAOMT:

Caffeoyl-CoA 3-O-methyltransferase

4CL:

4-Coumarate-CoA ligase

CAD:

Cinnamyl alcohol dehydrogenase

FTIR:

Fourier transform infrared spectroscopy

MWL:

Milled wood lignin

PVS2:

Plant vitrification solution 2

Py/GC/MS:

Pyrolysis gas chromatography mass spectrometry

References

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Ann Rev Plant Biol 54:519–546

    Article  CAS  Google Scholar 

  • Brunow G, Kilpeläinen I, Lapierre C, Lundquist K, Simola LK, Lemmetyinen J (1993) The chemical structure of extracellular lignin released by cultures of Picea abies. Phytochemistry 32:845–850

    Article  CAS  Google Scholar 

  • Brunow G, Ämmälahti E, Niemi T, Sipilä J, Simola LK, Kilpeläinen I (1998) Labelling of a lignin from suspension cultures of Picea abies. Phytochemistry 47:1495–1500

    Article  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Dedicova B, Nilsson O, Egertsdotter U (2011) Effect of cryopreservation on growth of different elite embryogenic cell lines of Norway spruce (Picea abies (L.) Karst.). Acta Hortcult 908:203–206

    Article  CAS  Google Scholar 

  • Ehlting J, Shin JJ, Douglas CJ (2001) Identification of 4-coumarate: coenzyme A ligase (4CL) substrate recognition domains. Plant J 27:455–465

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Durzan J, Finkle BJ (1987) Somatic polyembryogenesis in embryogenic cell masses of Picea abies (Norway spruce) and Pinus taeda (loblolly pine) after thawing from liquid nitrogen. Can J For Res 17:1130–1134

    Article  Google Scholar 

  • Häggman HM, Ryynänen LA, Aronen TS, Krajnakova J (1998) Cryopreservation of embryogenic cultures of Scots pine. Plant Cell Tissue Organ Cult 54:45–53

    Article  Google Scholar 

  • Häggman H, Aronen T, Ryynänen L (2000) Cryopreservation of embryogenic cultures of conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Kluwer Academic Publishers, Dordrecht, pp 707–728

    Chapter  Google Scholar 

  • Hazubska-Przybył T, Chmielarz P, Michalak M, Dering M, Bojarczuk K (2013) Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth-dehydration method. Plant Cell Tissue Organ Cult 113:303–313

    Article  Google Scholar 

  • Heine-Dobbernack E, Kiesecker H, Schumacher HM (2008) Cryopreservation of dedifferentiated cell cultures. In: Reed BM (ed) Plant cryopreservation. A practical guide. Springer, New York, pp 141–165

    Chapter  Google Scholar 

  • Johnston JW, Harding K, Benson EE (2007) Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation. Plant Sci 172:524–534

    Article  CAS  Google Scholar 

  • Jörgenssen J (1990) Conservation of valuable gene resources by cryopreseravation in some forest tree species. J Plant Physiol 136:373–376

    Article  Google Scholar 

  • Joshi C, Chiang V (1998) Conserved sequence motifs in plant S-adenosyl-l-methionine-dependent methyltransferases. Plant Mol Biol 37:663–674

    Article  CAS  PubMed  Google Scholar 

  • Kärkönen A, Fry SC (2006) Effect of ascorbate and its oxidation products on H2O2 production in cell-suspension cultures of Picea abies and in the absence of cells. J Exp Bot 57:1633–1644

    Article  PubMed  Google Scholar 

  • Kärkönen A, Koutaniemi S (2010) Lignin biosynthesis studies in plant tissue cultures. J Integr Plant Biol 52:176–185

    Article  PubMed  Google Scholar 

  • Kärkönen A, Koutaniemi S, Mustonen M, Syrjänen K, Brunow G, Kilpeläinen I, Teeri TH, Simola LK (2002) Lignification related enzymes in Picea abies suspension cultures. Physiol Plant 114:343–353

    Article  PubMed  Google Scholar 

  • Kärkönen A, Warinowski T, Teeri TH, Simola LK, Fry SC (2009) On the mechanism of apoplastic H2O2 production during lignin formation and elicitation in cultured spruce cells—peroxidases after elicitation. Planta 230:553–567

    Article  PubMed  Google Scholar 

  • Kärkönen A, Meisrimler CN, Takahashi J, Väisänen E, Laitinen T, Jiménez Barboza LA, Holmström S, Salonvaara S, Wienkoop S, Fagerstedt KF, Lüthje S (2014) Isolation of cellular membranes from lignin-producing tissues of Norway spruce and analysis of redox enzymes. Physiol Plant 152:599–616

    Article  PubMed  Google Scholar 

  • Koutaniemi S, Toikka MM, Kärkönen A, Mustonen M, Lundell T, Simola LK, Kilpeläinen IA, Teeri TH (2005) Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin forming Picea abies suspension culture. Plant Mol Biol 58:141–157

    Article  CAS  PubMed  Google Scholar 

  • Koutaniemi S, Warinowski T, Kärkönen A, Alatalo E, Fossdal CG, Saranpää P, Laakso T, Fagerstedt KV, Simola LK, Paulin L, Rudd S, Teeri TH (2007) Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Mol Biol 65:311–328

    Article  CAS  PubMed  Google Scholar 

  • Koutaniemi S, Malmberg HA, Simola LK, Teeri TH, Kärkönen A (2015) Norway spruce (Picea abies) laccases: characterisation of a laccase in a lignin-forming tissue culture. J Integr Plant Biol 57:341–348

    Article  CAS  PubMed  Google Scholar 

  • Krajňáková J, Sutela S, Aronen T, Gömöry D, Vianello A, Häggman H (2011) Long-term cryopreservation of Greek fir embryogenic cell lines: recovery, maturation and genetic fidelity. Cryobiology 63:17–25

    Article  PubMed  Google Scholar 

  • Kremer A, Potts BM, Delzon S (2014) Genetic divergence in forest trees: understanding the consequences of climate change. Funct Ecol 28:22–36

    Article  Google Scholar 

  • Laitinen T, Morreel K, Delhomme N, Gauthier A, Schiffthaler B, Nickolov K, Brader G, Lim KJ, Teeri TH, Street N, Boerjan W, Kärkönen A (2017) A key role for apoplastic H2O2 in Norway spruce phenolic metabolism. Plant Physiol 174:1449–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wu HX, Southerton SG (2010) Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in Pinus radiata. New Phytol 187:764–776

    Article  CAS  PubMed  Google Scholar 

  • Mamedes-Rodrigues TC, Batista DS, Napoleão TA, Cruz ACF, Fortini EA, Nogueira FTS, Romanel E, Otoni WC (2017) Lignin and cellulose synthesis and antioxidative defense mechanisms are affected by light quality in Brachypodium distachyon. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-017-1356-7

    Google Scholar 

  • Merkle S, Montello P, Reece H, Kong L (2014) Somatic embryogenesis and cryostorage of eastern hemlock and Carolina hemlock for conservation and restoration. Trees 28:1767–1776

    Article  Google Scholar 

  • Nagy NE, Franceschi V, Kvaalen H, Solheim H (2005) Callus cultures and bark from Norway spruce clones show similar cellular features and relative resistance to fungal pathogens. Trees 19:694–702

    Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73

    Article  CAS  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Ellen Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson Å, Rilakovic N, Ritland C, Rosselló JA, Sena J, Svensson T, Talavera-López C, Theißen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

  • Patel RV, Nahal HK, Breit R, Provart NJ (2012) BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species. Plant J 71:1038–1050

    Article  CAS  PubMed  Google Scholar 

  • Pierik RLM (1987) In vitro culture of higher plants. Martinus Nijhoff Publishers, Dordrech, p 344

    Book  Google Scholar 

  • Pritchard HW, Moat JF, Ferraz JBS, Marks TR, Camargo JLC, Nadarajan J, Ferraz IDK (2014) Innovative approaches to the preservation of forest trees. For Ecol Manag 333:88–98

    Article  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  CAS  PubMed  Google Scholar 

  • Sakai A, Hirai D, Niino T (2008) Development of PVS-based vitrification and encapsulation–vitrification protocols. In: Reed BM (ed) Plant Cryopreservation. A practical guide. Springer, New York, pp 33–57

    Chapter  Google Scholar 

  • Sánchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallosc L, Daniel A. Jacobo-Velázquez (2013) The Folin-Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Anal Methods 5:5990–5999

    Article  Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  • Simola LK, Santanen A (1990) Improvement of nutrient medium for growth and embryogenesis of megagametophyte and embryo callus lines of Picea abies. Physiol Plant 80:27–35

    Article  CAS  Google Scholar 

  • Simola LK, Lemmetyinen J, Santanen A (1992) Lignin release and photomixotrophism in suspension cultures of Picea abies. Physiol Plant 84:374–379

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Stuible H, Büttner D, Ehlting J, Hahlbrock K, Kombrink E (2000) Mutational analysis of 4-coumarate: CoA ligase identifies functionally important amino acids and verifies its close relationship to other adenylate-forming enzymes. FEBS Lett 467:117–122

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang R, Zhang X-Q, Li Y-H, Xie X-M (2014) Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase gene in Pennisetum purpureum. J Genet 93:145–158

    Article  CAS  PubMed  Google Scholar 

  • Touchell DH, Chiang VL, Tsai CJ (2002) Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21:118–124

    Article  CAS  Google Scholar 

  • Uchendu EE, Leonard SW, Traber MG, Reed BM (2010) Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep 29:25–35

    Article  CAS  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanholme R, Cesarino I, Rataj K, Xiao Y, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P, Welsh L, Haustraete J, McClellan C, Vanholme B, Ralph J, Simpson GG, Halpin C, Boerjan W (2013) Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341:1103–1106

  • Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 149:370–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner A, Tobimatsu Y, Phillips L, Flint H, Torr K, Donaldson L, Pears L, Ralph J (2011) CCoAOMT suppression modifies lignin composition in Pinus radiata. Plant J 67:119–129

    Article  CAS  PubMed  Google Scholar 

  • Wang JP, Naik PP, Chen HC, Shi R, Lin CY, Liu J, Shuford CM, Li Q, Sun YH, Tunlaya-Anukit S, Williams CM, Muddiman DC, Ducoste JJ, Sederoff RR, Chiang VL (2014) Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa. Plant Cell 26:894–914

  • Warinowski T, Koutaniemi S, Kärkönen A, Sundberg I, Toikka M, Simola LK, Kilpeläinen I, Teeri TH (2016) Peroxidases bound to the growing lignin polymer produce natural-like extracellular lignin in a cell culture of Norway spruce. Front Plant Sci 7:1523. https://doi.org/10.3389/fpls.2016.01523

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms Kaija Porkka for the initial characterization of the hard and soft calli. We thank funding from the Academy of Finland (decisions #251390, #256174 and #283245 to A.K.) and the Natural History Society of Oulu (Grant to S.V.). Te. L. thanks the Finnish Cultural Foundation, Häme Regional Fund for funding. Green chemistry from forest—Natural Resources Institute Finland self-funded project is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

AK, HH, JE, SJ-L and PS conceived and designed the experiments. SV, ED, JT, JE, KN, TeL, TaL, and AK performed the research. RK performed pyrolysis and data analysis. SV, ED, SJ-L, TaL, RK, PS, AK, and HH wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Anna Kärkönen or Hely Häggman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sergio J. Ochatt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 741 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viljamaa, S., Dikareva, E., Tolonen, J. et al. Cryopreservation of the Norway spruce tissue culture line able to produce extracellular lignin. Plant Cell Tiss Organ Cult 133, 225–235 (2018). https://doi.org/10.1007/s11240-017-1375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1375-4

Keywords

Navigation