Skip to main content
Log in

Cloning and characterization of DoMYC2 from Dendrobium officinale

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

MYC proteins, a group of transcription factors belonging to bHLH super family, play important roles in regulation of metabolism and plant growth. In this study, a novel MYC gene, DoMYC2 (GeneBank accession KJ649471), was isolated from Dendrobium officinale. The full length of DoMYC2 cDNA contains 2351 bp with an open reading frame of 1971 bp encoding 656 amino acids. BlastP analyses showed that its amino acid sequence was homologous with typical MYC proteins in other plant species. Furthermore, expression of DoMYC2 could be induced by MeJA and chitosan, respectively. Overexpression of DoMYC2 led to a decrease in transcript levels of AtHMGR2, AtFPS1 and AtFPS2 in Arabidopsis. Moreover, DoMYC2 was able to bind to the E-box cis-elements in yeast. These results suggest that DoMYC2 participate in terpenoid indole alkaloid synthesis through regulating the expression of key enzymes in MVA pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

TIA:

Terpenoid indole alkaloid

IPP:

Isopentenyl diphosphate

DMAPP:

Dimethylallyl diphosphate

MVA:

Mevalonate

MEP:

Methylerythritol phosphate

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell 9(10):1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(1):63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afrin S, Huang J, Luo Z (2015) JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Sci Bull 60(12):1062–1072

    Article  CAS  Google Scholar 

  • Atchley WR, Terhalle W, Dress A (1999) Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J Mol Evol 48(5):501–516

    Article  CAS  PubMed  Google Scholar 

  • Atchley WR, Wollenberg KR, Fitch WM, Terhalle W, Dress AW (2000) Correlations among amino acid sites in bHLH protein domains: an information theoretic analysis. Mol Biol Evol 17(1):164–178

    Article  CAS  PubMed  Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177(2):301–318

    Article  CAS  PubMed  Google Scholar 

  • Bulpitt CJ, Li Y, Bulpitt PF, Wang J (2007) The use of orchids in Chinese medicine. J R Soc Med 100(12):558–563

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Qin Q, Dai D, Kong L, Li W, Zha X, Jin Y, Tang K (2009) Isolation and characterization of a novel cDNA encoding methyl jasmonate-responsive transcription factor TcAP2 from Taxus cuspidata. Biotech Lett 31(11):1801–1809.

    Article  CAS  Google Scholar 

  • Fan HH, Wu QJ, Wang X, Wu LS, Cai YP, Lin Y (2016) Molecular cloning and expression of 1-deoxy-d-xylulose-5-phosphate synthase and 1-deoxy-d-xylulose-5-phosphate reductoisomerase in Dendrobium officinale. Plant Cell Tiss Organ Cult 125(2):381–385

    Article  CAS  Google Scholar 

  • Fernandez-Calvo P, Solano R (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23(23):701–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferré-D’Amaré AR, Prendergast GC, Ziff EB, Burley SK (1993) Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363(6424):38–45

    Article  PubMed  Google Scholar 

  • Gantet P, Memelink J (2002) Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. Adv Ther 23(12):1–11

    Google Scholar 

  • Guo X, Li Y, Li C, Luo H, Wang L, Qian J, Luo X, Xiang L, Song J, Sun C, Xu H, Yao H, Chen S (2013) Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Gene 527(1):131–138

    Article  CAS  PubMed  Google Scholar 

  • Hong G, Xue X, Mao Y, Wang L, Chen X (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24(6):2635–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Chaturvedi R, Sundar D, Bisaria VS (2016) Piriformospora indica enhances the production of pentacyclic triterpenoids in Lantana camara L. suspension cultures. Plant Cell Tissue Organ Cult 125(1):23–29

    Article  CAS  Google Scholar 

  • Lakhotia P, Singh K.P, Singh S.K, Singh M.C, Prasad K.V, Swaroop K (2014) Influence of biotic and abiotic elicitors on production of betalain pigments in bougainvillea callus cultures. Indian J Hortic 71(3):373–378.

    Google Scholar 

  • Lorenzo O, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16(7):1938–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memelink J, Gantet P (2007) Transcription factors involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Phytochem Rev 6(2–3):353–362

    Article  CAS  Google Scholar 

  • Menke FL, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18(16):4455–4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman JD, Chappell J (1999) Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol 34(2):95–106

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Figueroa P (2011) Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. J Exp Bot 62(6):2143–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schluttenhofer C, Yuan L (2015) Regulation of specialized metabolism by WRKY transcription factors. Plant Physiol 167(2):295–306

    Article  CAS  PubMed  Google Scholar 

  • Schweizer F, FernandezCalvo P, Zander M Diez-Diaz M, Fonseca S, Glauser GT, Lewsey MG, Ecker JR, Solano R, Reymond P (2013) Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. The Plant Cell 25(8):3117–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157(4):2081–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd AT, Liu E, Polvi SL, Pammett RT, Page JE (2010) A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana. Plant J 62(4):589–600

    Article  CAS  PubMed  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15(8):1749–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma P, Khan SA, Mathur AK, Ghosh S, Shanker K, Kalra A (2014) Improved sanguinarine production via biotic and abiotic elicitations and precursor feeding in cell suspensions of latex-less variety of Papaver somniferum with their gene expression studies and upscaling in bioreactor. Protoplasma 251(6):1359–1371

    Article  CAS  PubMed  Google Scholar 

  • Woldemariam MG, Dinh ST, OhY, Gaquerel E, Baldwin IT, Galis I (2013) NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata. BMC Plant Biol 13(1):73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G, Pre M, Gantet P, Memelink J (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J Cell Mol Biol 67(1):61–71

    Article  CAS  Google Scholar 

Download references

Acknowlegements

The present investigation is financially supported by Scientific Research Project of Anhui Provincial Department of Education (KJ2015A005) and The Biology Key Subject Construction of Anhui, Collaborative Innovation Center of Agri-forestry Industry in Dabieshan Area, Anhui Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honghong Fan or Yi Lin.

Additional information

Yanfang Zhu and Cancan Meng have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Meng, C., Zhu, L. et al. Cloning and characterization of DoMYC2 from Dendrobium officinale . Plant Cell Tiss Organ Cult 129, 533–541 (2017). https://doi.org/10.1007/s11240-017-1198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1198-3

Keywords

Navigation