Skip to main content
Log in

Molecular characterization of a novel AP2 transcription factor ThWIND1-L from Thellungiella halophila

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Several AP2/ERF transcription factors are wound-induced regulators, which play key roles in controlling cell dedifferentiation. In this study, a novel AP2/ERF transcription factor, the WIND1-like gene (ThWIND1-L), was isolated and characterized from Thellungiella halophila. ThWIND1-L cDNA clone contained a full open reading frame (ORF) of 1,068 bp encoding 356 amino acids. The predicted amino acid sequence of ThWIND1-L cDNA shared remarkably high degree of identity with the Arabidopsis RAP2.4 (WIND1). The expression of ThWIND1-L rapidly responded to the wound signals, ectopic expression of ThWIND1-L in Arabidopsis plants promoted callus tissue formation without the presence of exogenous hormones. Furthermore, overexpression of ThWIND1-L influenced some primary transcription factors (TFs), which have been shown to be involved in cell dedifferentiation and shoot regeneration. These results indicated ThWIND1-L might be a wound-induced regulator, which played an important role in the control of cell dedifferentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TFs:

Transcription factors

ORF:

Open reading frame

RACE:

Rapid amplification of cDNA ends

SAM:

Shoot apical meristem

2,4-D:

2,4-Dichlorophenoxyacetic acid

EST:

Expressed sequence tag

OE-ThWIND1-L :

Overexpression of ThWIND1-L

References

  • Abdel Hamid AK, Mamdouh SS, Mamdouh MN et al (2011) A DREB gene from the xero-halophyte Atriplex halimus is induced by osmotic but not ionic stress and shows distinct differences from glycophytic homologues. Plant Cell Tissue Organ Cult 106:191–206

    Article  Google Scholar 

  • Al-Shebaz IA, O’Kane SLJ, Price RA (1999) Genetic placement of species excluded from Arabidopsis. Novon 9:296–307

    Article  Google Scholar 

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2(1):3–12

    Article  PubMed  CAS  Google Scholar 

  • Arroyo-Herrera A, Gonzalez AK, Moo RC, Quiroz-Figueroa FR et al (2008) Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell Tissue Organ Cult 94:171–180

    Article  Google Scholar 

  • Banno H, Ikeda Y, Niu Q-W, Chua N-H (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13:2609–2618

    PubMed  CAS  Google Scholar 

  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619

    Article  PubMed  CAS  Google Scholar 

  • Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127:1354–1360

    Article  PubMed  CAS  Google Scholar 

  • Cai SA, Fu XB, Sheng ZY (2007) Dedifferentiation: a new approach in stem cell research. Bioscience 57:655–662

    Article  Google Scholar 

  • Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141:620–637

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Harding WE, Weining T, Nichols KW, Fernandez DE, Perry SE (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-like 15. Plant Physiol 133:653–663

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Banno H, Niu QW, Howell SH, Chua NH (2007) The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis regulates CUP-SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development. Plant Cell Physiol 47:1443–1456

    Article  Google Scholar 

  • Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M (2011) The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol 21:508–514

    Article  PubMed  CAS  Google Scholar 

  • Jin TC, Chang Q, Li WF, Yin DX et al (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tissue Organ Cult 100:219–227

    Article  CAS  Google Scholar 

  • Kirch T, Simon R, Grünewald M, Werr W (2003) The DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem cell fate and lateral organ development. Plant Cell 15(3):694–705

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306

    Article  PubMed  CAS  Google Scholar 

  • Lee LY, Kononov ME, Bassuner B, Frame BR, Wang K, Gelvin SB (2007) Novel plant transformation vectors containing the super promoter. Plant Physiol 145(4):1294–1300

    Article  PubMed  CAS  Google Scholar 

  • Marsch-Martinez N, Greco R, Becker JD, Dixit S, Bergervoet JH, Karaba A, de Folter S, Pereira A (2006) BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways. Plant Mol Biol 62(6):825–843

    Article  PubMed  CAS  Google Scholar 

  • Matsuo N, Makino M, Banno H (2011) Arabidopsis ENHANCER OF SHOOT REGENERATION (ESR)1 and ESR2 regulate in vitro shoot regeneration and their expressions are differentially regulated. Plant Sci 181:39–46

    Article  PubMed  CAS  Google Scholar 

  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  PubMed  CAS  Google Scholar 

  • Mordhorst AP, Toonen MAJ, de Vries SC (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–495

    Article  CAS  Google Scholar 

  • Oelkers K, Goffard N, Weiller GF, Gresshoff PM, Mathesius U, Frickey T (2008) Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biol 8:1

    Article  PubMed  Google Scholar 

  • Okamoto S, Nakagawa T, Kawaguchi M (2011) Expression and functional analysis of a CLV3-like gene in the model legume Lotus japonicas. Plant Cell Physiol 52:1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Reid JB, Ross JJ (2011) Regulation of tissue repair in plants. Proc NatI Acad Sci 108:17241–17242

    Article  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379(6):633–646

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  PubMed  CAS  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  PubMed  CAS  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Symp Soc Exp Biol 11:118–131

    PubMed  CAS  Google Scholar 

  • Stappenbeck TS, Miyoshi H (2009) The role of stromal stem cells in tissue regeneration and wound repair. Science 324:1666–1669

    Article  PubMed  CAS  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Taji T, Sakurai T, Mochida K, Ishiwata A, Kurotani A et al (2008) Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biol 18:115

    Article  Google Scholar 

  • Tan BC, Chin CF, Alderson P (2011) Optimization of plantlet regeneration from leaf and nodal derived callus of Vanilla planifolia Andrews. Plant Cell Tissue Organ Cult 105:457–463

    Article  CAS  Google Scholar 

  • Wang QJ, Xu KY, Tong ZG, Wang SH, Gao ZH, Zhang JY, Zong CW, Qiao YS, Zhang Z (2010) Characterization of a new dehydration responsive element binding factor in central arctic cowberry. Plant Cell Tissue Organ Cult 101:211–219

    Article  CAS  Google Scholar 

  • Yang JL, Liu YD, Yang CP, Liu GF, Li CH (2011) Induction of somatic embryogenesis from female flower buds of elite Schisandra chinensis. Plant Cell Tissue Organ Cult 106:391–399

    Article  CAS  Google Scholar 

  • Yu Y, Feng Z, Wang G, Li F, Du X, Zhu J (2010) Initiation of dedifferentiation and structural changes in vitro cultured petiole of Arabidopsis thaliana. Protoplasma 241:75–81

    Article  PubMed  Google Scholar 

  • Zhang Y, Lai J, Sun S, Li Y, Liu Y, Liang L, Chen M, Xie Q (2008) Comparison analysis of transcripts from the halophyte Thellungiella halophila. J Integr Plant Biol 50:1327–1335

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    PubMed  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our work was supported by the National Natural Science Foundation of China (grant no. 30970169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Guo, J., Feng, Z. et al. Molecular characterization of a novel AP2 transcription factor ThWIND1-L from Thellungiella halophila . Plant Cell Tiss Organ Cult 110, 423–433 (2012). https://doi.org/10.1007/s11240-012-0163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0163-4

Keywords

Navigation