Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 102, Issue 3, pp 267–277 | Cite as

Production of in vitro haploid plants from in situ induced haploid embryos in winter squash (Cucurbita maxima Duchesne ex Lam.) via irradiated pollen

Original Paper

Abstract

The influence of pollen irradiation on the production of in vitro haploid plants from in situ induced haploid embryos was investigated in winter squash (Cucurbita maxima Duchesne ex Lam.). Pollen were irradiated at different gamma-ray doses (50, 100, 200 and 300 Gray) and durations (9, 11, 15, 21, and 28 July). Production of in vitro haploid plantlets was influenced by irradiation dose, irradiation duration, genotype, and embryo type and embryo stage. Embryos were only obtained from lower irradiation doses (50 Gray and 100 Gray) and earlier irradiation durations (9, 11, and 15 July). The greatest embryo number per fruit was procured from “G14” and “55SI06” genotypes at 50 Gray gamma-ray dose. Necrotic embryos were higher than normal embryos at delayed harvest times (5 and 6 weeks after the pollination). The convenient harvest time for embryo rescue was observed about 4 weeks (between 25 and 30 days) after pollination. All cotyledon and amorphous embryos had only diploid plants while late-torpedo, arrow-tip, and pro-cotyledon embryos produced 33.3, 50.0, and 66.7% haploid plant. The frequency of haploid plantlets was 0.11, 1.17, 10.96 and 0.28 per 100 seeds, 100 embryos, 100 plantlets and a fruit at 50 Gray gamma-ray dose, respectively.

Keywords

Irradiated pollen In vitro haploidization Winter squash (Cucurbita maxima Duchesne ex Lam.) 

References

  1. Abak K, Sari N, Paksoy M, Yılmaz H, Aktaş H, Tunalı C (1996) Genotype response to haploid embryo induction with pollination by irradiated pollen in melon, obtaining of dihaploid lines, determination of haploid plants by different techniques. Turk J Agric For 20:425–430Google Scholar
  2. Alison A, Casareft P (1968) Radiation biology. United States Atomic Energy Commission, Washington, DCGoogle Scholar
  3. Athanasios LT, Koutita O, Anastasiadou A (2009) Description and analysis of genetic diversity among squash accessions. Braz Arch Biol Technol 52:271–283Google Scholar
  4. Berlyn GP, Beck RC, Renfroe MH (1986) Tissue culture and the propagation and genetic improvement of conifers: problems and possibilities. Tree Physiol 1:227–240PubMedGoogle Scholar
  5. Bernstein EF, Sullivan FJ, Mitchel JB (1993) Biology of chronic radiation effect on tissues and wound healing. Clin Plast Surg 20:435–453PubMedGoogle Scholar
  6. Brewbaker JL, Emery GC (1962) Pollen radiobotany. Radiat Bot 1:101–154CrossRefGoogle Scholar
  7. Caglar G, Abak K (1999) Obtention of in vitro haploid plants from in situ induced haploid embryos in cucumber (Cucumis sativus L.). Turk J Agric For 23:283–290Google Scholar
  8. Chahal GS, Gosal SS (2002) Principles and procedures of plant breeding. Alpha Science, OxfordGoogle Scholar
  9. Cuny F (1992) Processus d’induction d’embryons haploides par du pollen irradié chez le melon (Cucumis melo L.) responses du pollen à l’irradiation gamma. Thèse de Docteur, Université d’Avignon et des Pays de Vaucluse, AvignonGoogle Scholar
  10. Darlington CD, La Cour LF (1963) Methoden der chromosomenuntersuchungten. Keller, StuttgartGoogle Scholar
  11. De Witte K (2000) Review of research at fruitteeltcentrum on the production of homozygous plants through androgenesis in vitro and parthenogenesis in situ. Acta Hort 520:135–148Google Scholar
  12. Decker-Walters DS, Walters TW, Posluszny U (1990) Genealogy and gene flow among annual and domesticated species of Cucurbita. Can J Bot 68:782–789CrossRefGoogle Scholar
  13. Dolcet-Sanjuan R, Claveria E, Garcia-Mas J (2006) Cucumber (Cucumis sativus L.) dihaploid line production using in vitro rescue of in vivo induced parthenogenic embryos. Acta Hort 725:837–844Google Scholar
  14. Dore C (1986) Evaluation du niveau de ploidie des plantes d’une population de choux de Bruxelles (Brassica oleracea L. ssp. gemmifera) d’origine pollinique. Agronomie 6:797–801CrossRefGoogle Scholar
  15. Ezura H, Oosawa K (1994) Ploidy of somatic embryos and the ability to regenerate plantlets in melon (Cucumis melo L.). Plant Cell Rep 14:107–111CrossRefGoogle Scholar
  16. Faris NM, Nikolova V, Niemirowicz-Szczytt K (1999) The effect of gamma irradiation dose on cucumber (Cucumis sativus L.) haploid embryo production. Acta Phys Plant 21:301–396Google Scholar
  17. Ficcadenti N, Veronese P, Sestili S, Crino P, Lucretti S, Schiavi M, Saccardo F (1995) Influence of genotype on the induction of haploidy in Cucumis melo L. by using irradiated pollen. J Genet Breed 49:359–364Google Scholar
  18. Germana MA (2006) Doubled haploid production in fruit crops. Plant Cell Tiss Organ Cult 86:131–146CrossRefGoogle Scholar
  19. Goldschmidt H, Breneman JC, Breneman DL (1994) Ionizing radiation therapy in dermatology. J Am Acad Dermatol 30:157–182CrossRefPubMedGoogle Scholar
  20. Gursoz N, Abak K, Pitrat M, Rode JC, Dumas de Vaulx R (1991) Obtention of haploid plants induced by irradiated pollen in watermelon (Citrullus lanatus). Cucurbit Genetic Coop 14:109–110Google Scholar
  21. Heikal AH, Abdel-Razzak HS, Hafez EE (2008) Assessment of genetic relationships among and within cucurbita species using RAPD and ISSR markers. J App Sci Res 4:515–525Google Scholar
  22. Jain SM, Sopory SK, Veilleux RE (1996) In vitro haploid production in higher plants. Kluwer, DordrechtGoogle Scholar
  23. Jaskani MJ, Khan IA, Khan MM (2005) Fruit set, seed development and embryo germination in interploid crosses of citrus. Scientia Hort 107:51–57CrossRefGoogle Scholar
  24. Kurtar ES (1999) Research on the effects of genotypes and growing seasons on in situ haploid embryo induction and in vitro plant obtention via irradiated pollen in squash. PhD Thesis, University of ÇukurovaGoogle Scholar
  25. Kurtar ES (2009) Influence of gamma irradiation on pollen viability, germinability and fruit and seed-set of pumpkin and winter squash. Afr J Bio 8:6918–6926Google Scholar
  26. Kurtar ES, Sari N, Abak K (2002) Obtention of haploid embryos and plants through irradiated pollen technique in squash (Cucurbita pepo L.). Euphytica 127:335–344CrossRefGoogle Scholar
  27. Kurtar ES, Balkaya A, Özbakır M, Ofluoglu T (2009) Induction of haploid embryo and plant regeneration via irradiated pollen technique in pumpkin (Cucurbita moschata Duchesne ex. Poir). Afr J Bio 8:5944–5951Google Scholar
  28. Lacadena JR (1974) Spontaneous and induced parthenogenesis and androgenesis. In: Kasha KJ (ed) Haploids in higher plants—advances and potential. University of Guelph, Guelph, Canada, pp 13–32Google Scholar
  29. Lim W, Earle ED (2008) Effect of in vitro and in vivo colchicine treatments on pollen production and fruit recovery on melon plants obtained after pollination with irradiated pollen. Plant Cell Rep 95:115–124Google Scholar
  30. Lim W, Earle ED (2009) Enhanced recovery of doubled haploid lines from parthenogenetic plants of melon (Cucumis melo L.). Plant Cell Rep 98:351–356Google Scholar
  31. Lotfi M, Kashi A, Onsinejad R (1999) Induction of parthenogenetic embryos by irradiated pollen in cucumber. Acta Hort 492:323–328Google Scholar
  32. Lotfi M, Alan AR, Henning MJ, Jahn MM, Earle ED (2003) Production of haploid and doubled haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep 21:1121–1128CrossRefPubMedGoogle Scholar
  33. Maestro-Tejada MC (1992) Résistance du melon aux virus. Interaction avec les pucerons vecteurs. Analyse génétique sur les lignées haplodiploides. Thése de Docteur, Université de Droit, d’Economie et des Sciences d’Aix-MarseilleGoogle Scholar
  34. Nepi M, Pacini E (1993) Pollination, pollen viability and pistil receptivity in Cucurbita pepo. Ann Bot 72:527–536CrossRefGoogle Scholar
  35. Niemirowicz-Szczytt K, Dumas de Vaulx R (1989) Preliminary data on haploid cucumber (Cucumis sativus L.) induction. Cucurbit Genetics Coop 12:24–25Google Scholar
  36. Ondrej V, Navratilova B, Lebeda A (2002) In vitro cultivation of Cucumis sativus ovules after fertilization. Acta Hort 588:339–343Google Scholar
  37. Ozalpan A (2001) Temel Radyobiyoloji. Haliç University Press, CambridgeGoogle Scholar
  38. Pandey KK (1978) Gametic gene transfer in Nicotiana by means of irradiated pollen. Genetica 49:53–69CrossRefGoogle Scholar
  39. Pandey KK, Phung M (1982) Hertwig effect in plants: induced parthenogenesis through the use of irradiated pollen. Theor Appl Genet 62:295–300Google Scholar
  40. Pochard E, Dumas de Vaulx R (1971) La monoploidie chez le piment (Capsicum annuum L.). Z Pflanzenzüchtg 65:23–46Google Scholar
  41. Raghavan V (1986) Embryogenesis in angiosperms: a developmental and experimental study. Cambridge University Press, CambridgeGoogle Scholar
  42. Raquin C, Cornu A, Farcy E, Maizonnier D, Pelletier G, Vedel F (1989) Nucleus substitution between Petunia species using gamma ray-induced androgenesis. Theor Appl Genet 78:337–341CrossRefGoogle Scholar
  43. Renata S, Visser T (1987) Embryo development and fruit set in pear induced by untreated and irradiated polen. Euphytica 36:287–294CrossRefGoogle Scholar
  44. Rouselle F (1992) Techniques d’éstimation nombre de chloroplastes. In: Jahier J et al (eds) Techniques de Cytogénétique Végétale. INRA , ParisGoogle Scholar
  45. Sari N (1994) Effect of genotype and season on the obtention of haploid plants by irradiated pollen in watermelon and alternatives to the irradiation. PhD Thesis, University of ÇukurovaGoogle Scholar
  46. Sari N, Abak K, Pitrat M, Dumas de Vaulx R (1992) Induction of parthenogenetic haploid embryos and plant obtention in melon (Cucumis melo L. var. inodorus Naud ve C. melo L. var. reticulatus Naud). Trans J Agric For 16:302–314Google Scholar
  47. Sari N, Abak K, Pitrat M, Rode JC, Dumas de Vaulx R (1994) Induction of parthenogenetic haploid embryos after pollination by irradiated pollen in watermelon. HortScience 29:1189–1190Google Scholar
  48. Sari N, Abak K, Pitrat M (1999a) Comparison of ploidy level screening methods in watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai). Scientia Hort 82:265–277CrossRefGoogle Scholar
  49. Sari N, Ekiz H, Yücel S, Yetisir H, Ekbiç H, Abak K (1999b) Investigation of new protected cultivation melon lines resistant to Fusarium oxysporium f.sp. melonis using dihaplodization. Turkey IIIrd National Horticultural Congress, 14–17 September 1999, Ankara, pp 498–503Google Scholar
  50. Sauton A (1988) Effect of season and genotype on gynogenetic haploid production in muskmelon, Cucumis melo L. Sci Hort 35:71–75CrossRefGoogle Scholar
  51. Sauton A (1989) Haploid gynogenesis in Cucumis sativus induced by irradiated pollen. Cucurbit Genetics Coop 12:22–23Google Scholar
  52. Sauton A, Dumas De Vaulx R (1987) Obtention de plantes haploides chez le melon (Cucumis melo L.) par gynogénèse induite par du pollen irradié. Agronomie 7:141–148CrossRefGoogle Scholar
  53. Savaskan C, Toker MC (1991) The effects of various doses of gamma irradiation on the seed germination and root tips chromosomes of rye (Secale cereale L.). Trans J Bot 15:349–359Google Scholar
  54. Savin F, Decomble V, Le Couviour M, Hallard J (1988) The X-ray detection of haploid embryos arisen in muskmelon (Cucumis melo L.) seeds, and resulting from a parthenogenetic development induced by irradiated pollen. Cucurbit Genetics Coop 11:39–42Google Scholar
  55. Sensoy AS, Ercan N, Ayar F, Temirkaynak M (2003) Determination of some morphologic characteristics and viability of some vegetable crops in Cucurbitaceae family. J Agric Fac Akdeniz Univ 16:1–6Google Scholar
  56. Shridhar (1992) Pollen grains of cultivated Cucurbits. In: Proceedings of the 5th Eucarpia Cucurbitaceae Symp, July 27–31, Warsaw, Poland, 28–33Google Scholar
  57. Stairs GR, Mergen F (1964) Potential uses of irradiated pollen in forest genetics. In: Proceedings of the 11th northeastern forest tree improved conference, pp 38–41Google Scholar
  58. Sun Y, Mei S, Peng J, Zhang L, Nie Q, Zeng H, Du N (2006) Induced haploid plants after pollination by irradiated pollen in Cucumis melo L. Hubei Agr Sci 4:98–100Google Scholar
  59. Taner KY, Yanmaz R, Kunter B (2000) The effects of irradiation dose and harvest period on haploid plant formation via irradiated pollen in snake cucumber (Cucumis melo var. flexuosus Naud.). IIIrd National Vegetable Culture Symp, Isparta-Turkey, 177–181Google Scholar
  60. Todorova M, Ivanov P, Ninova N, Encheva J (2004) Effect of female genotype on the efficiency of induced perthenogenesis in sunflower (Helianthus annuus L.). Hella 27:67–74CrossRefGoogle Scholar
  61. Tokarek R, Bernstein EF, Sullivan F (1994) Effect of therapeutic radiation on wound healing. Clin Dermatol 12:57–70CrossRefPubMedGoogle Scholar
  62. Truong-André I (1988) In vitro haploid plants derived from pollinisation by irradiated pollen on cucumber. In: Proceedings of the Eucarpia meeting on cucurbit genetics and breeding. May 31–June 2, Avignon-Montfavet, pp 143–144Google Scholar
  63. Whitaker TW, Bemis WP (1964) Evolution in the genus. Cucurbita. Evolution 18:553–559CrossRefGoogle Scholar
  64. Xie M, Zhao J, Pan J, He H, Wu A, Cai R (2005) Induced haploid plants after pollination by irradiated pollen in Cucumis sativus L. J Shanghai Jiaotong Univ (Agr Sci) 2:45–49Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.High School of Profession of BafraOndokuz Mayis UniversityBafra, SamsunTurkey
  2. 2.Horticulture Department of Agriculture FacultyOndokuz Mayis UniversitySamsunTurkey

Personalised recommendations