Performance of the right ventricular outflow tract/aortic diameter as a novel predictor of risk in patients with acute pulmonary embolism

Abstract

Right ventricular (RV) enlargement, determined via the ratio of the right to left ventricular diameters (RV/LV) by CT imaging is used to classify the severity of acute pulmonary embolism (PE) and impacts treatment decisions. The RV/LV ratio may be an unreliable marker of RV dysfunction, due in part to the complex RV geometry. This study compared the RV/LV ratio to a novel metric, the ratio of the right ventricular to aortic outflow tract diameters (RVOT/Ao) in patients with acute PE treated with catheter-directed therapies (CDT). RVOT/Ao and RV/LV ratios were measured on CT images from 103 patients who received CDT for acute submassive or massive PE and were compared to RV dysfunction severity determined by transthoracic echocardiography. Ratios and biomarkers on admission were assessed for correlation with invasively-measured hemodynamics [right atrial (RA) pressure, mean pulmonary artery (PA) pressure, cardiac output (CO)]. RVOT/Ao but not RV/LV ratios were increased in patients with moderate or severe RV dysfunction compared to those without RV dysfunction (p < 0.05). Neither ratio showed significant correlation with RA (r = 0.09 vs 0.055, p > 0.05), mean PA pressure (r = 0.167 vs 0.146, p > 0.05), or CO (r = 0.021 vs − 0.183, p > 0.05). proBNP correlated with mean PA pressure (r = 0.377, p < 0.05). The RVOT/Ao ratio may be better at assessing RV dysfunction than the RV/LV ratio in patients presenting with acute PE. Although currently accepted protocols rely on the RV/LV ratio in determining when CDT are of benefit, the RVOT/Ao ratio may be a more useful tool in identifying high risk patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Rendina D, De Bonis S, Gallotta G, Piedimonte V, Mossetti G, De Filippo G, Farina F, Vargas G, Barbella MR, Postiglione A, Strazzullo P (2010) Clinical, historical and diagnostic findings associated with right ventricular dysfunction in patients with central and non-massive pulmonary embolism. Intern Emerg Med 5(1):53–59. https://doi.org/10.1007/s11739-009-0330-8

    Article  PubMed  Google Scholar 

  2. 2.

    Miller RL, Das S, Anandarangam T, Leibowitz DW, Alderson PO, Thomashow B, Homma S (1998) Associationbetween right ventricular function and perfusion abnormalities in hemodynamically stable patients with acute pulmonary embolism. Chest 113(3):665–670. https://doi.org/10.1378/chest.113.3.665

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Burton GHSW, Vernon P (1984) Observations on the mechanism of hypoxaemia in acute minor pulmonary embolism. BMJ 289:276–279

    CAS  Article  Google Scholar 

  4. 4.

    Aujesky D, Obrosky DS, Stone RA, Auble TE, Perrier A, Cornuz J, Roy PM, Fine MJ (2005) Derivation and validation of a prognostic model for pulmonary embolism. Am J Respir Crit Care Med 172(8):1041–1046. https://doi.org/10.1164/rccm.200506-862OC

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ, Jenkins JS, Kline JA, Michaels AD, Thistlethwaite P, Vedantham S, White RJ, Zierler BK, American Heart Association Council on Cardiopulmonary CCP, Resuscitation, American Heart Association Council on Peripheral Vascular D, American Heart Association Council on, Arteriosclerosis T, Vascular B (2011) Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation 123(16):1788–1830. https://doi.org/10.1161/CIR.0b013e318214914f

    Article  PubMed  Google Scholar 

  6. 6.

    Pruszczyk P, Goliszek S, Lichodziejewska B, Kostrubiec M, Ciurzynski M, Kurnicka K, Dzikowska-Diduch O, Palczewski P, Wyzgal A (2014) Prognostic value of echocardiography in normotensive patients with acute pulmonary embolism. JACC Cardiovasc Imaging 7(6):553–560. https://doi.org/10.1016/j.jcmg.2013.11.004

    Article  PubMed  Google Scholar 

  7. 7.

    Bagla S, Smirniotopoulos JB, van Breda A, Sheridan MJ, Sterling KM (2015) Ultrasound-accelerated catheter-directed thrombolysis for acute submassive pulmonary embolism. J Vasc Interv Radiol 26(7):1001–1006. https://doi.org/10.1016/j.jvir.2014.12.017

    Article  PubMed  Google Scholar 

  8. 8.

    Moorjani N, Price S (2013) Massive pulmonary embolism. Cardiol Clin 31(4):503–518. https://doi.org/10.1016/j.ccl.2013.07.005

    Article  PubMed  Google Scholar 

  9. 9.

    Moores L, Zamarro C, Gomez V, Aujesky D, Garcia L, Nieto R, Yusen R, Jimenez D, Instituto Ramon y Cajal de Investigacion Sanitaria Pulmonary Embolism Study G (2013) Changes in PESI scores predict mortality in intermediate-risk patients with acute pulmonary embolism. Eur Respir J 41(2):354–359. https://doi.org/10.1183/09031936.00225011

    Article  PubMed  Google Scholar 

  10. 10.

    Jimenez D, Aujesky D, Moores L, Gomez V, Lobo JL, Uresandi F, Otero R, Monreal M, Muriel A, Yusen R (2010) Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med 170(15):1383–1389

    Article  Google Scholar 

  11. 11.

    Konstantinides SV, Torbicki A, Agnelli G, Danchin N, Fitzmaurice D, Galie N, Gibbs JS, Huisman MV, Humbert M, Kucher N, Lang I, Lankeit M, Lekakis J, Maack C, Mayer E, Meneveau N, Perrier A, Pruszczyk P, Rasmussen LH, Schindler TH, Svitil P, Vonk Noordegraaf A, Zamorano JL, Zompatori M, C (2014) Task force for the D, Management of Acute Pulmonary Embolism of the European Society of. Eur Heart J 35(43):3033–3069. https://doi.org/10.1093/eurheartj/ehu283

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Becattini C, Agnelli G, Lankeit M, Masotti L, Pruszczyk P, Casazza F, Vanni S, Nitti C, Kamphuisen P, Vedovati MC, De Natale MG, Konstantinides S (2016) Acute pulmonary embolism: mortality prediction by the 2014 European Society of Cardiology risk stratification model. Eur Respir J 48(3):780–786. https://doi.org/10.1183/13993003.00024-2016

    Article  PubMed  Google Scholar 

  13. 13.

    Shujaat A, Shapiro JM, Eden E (2013) Utilization of CT pulmonary angiography in suspected pulmonary embolism in a major urban emergency department. Pulm Med 2013:915213. https://doi.org/10.1155/2013/915213

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Meinel FG, Nance JW Jr, Schoepf UJ, Hoffmann VS, Thierfelder KM, Costello P, Goldhaber SZ, Bamberg F (2015) Predictive value of computed tomography in acute pulmonary embolism: systematic review and meta-analysis. Am J Med 128(7):747-759 e742. https://doi.org/10.1016/j.amjmed.2015.01.023

    Article  PubMed  Google Scholar 

  15. 15.

    Quinlan DJMA, Eikelboom JW (2004) Low-molecular-weight heparin compared with intravenous unfractionated heparin for treatment of pulmonary embolism. Ann Intern Med 140:175–183

    CAS  Article  Google Scholar 

  16. 16.

    Kucher N, Boekstegers P, Muller OJ, Kupatt C, Beyer-Westendorf J, Heitzer T, Tebbe U, Horstkotte J, Muller R, Blessing E, Greif M, Lange P, Hoffmann RT, Werth S, Barmeyer A, Hartel D, Grunwald H, Empen K, Baumgartner I (2014) Randomized, controlled trial of ultrasound-assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism. Circulation 129(4):479–486. https://doi.org/10.1161/CIRCULATIONAHA.113.005544

    Article  PubMed  Google Scholar 

  17. 17.

    Piazza G, Hohlfelder B, Jaff MR, Ouriel K, Engelhardt TC, Sterling KM, Jones NJ, Gurley JC, Bhatheja R, Kennedy RJ, Goswami N, Natarajan K, Rundback J, Sadiq IR, Liu SK, Bhalla N, Raja ML, Weinstock BS, Cynamon J, Elmasri FF, Garcia MJ, Kumar M, Ayerdi J, Soukas P, Kuo W, Liu PY, Goldhaber SZ, Investigators SI (2015) A prospective, single-arm, multicenter trial of ultrasound-facilitated, catheter-directed, low-dose fibrinolysis for acute massive and submassive pulmonary embolism: the SEATTLE II study. JACC Cardiovasc Interv 8(10):1382–1392. https://doi.org/10.1016/j.jcin.2015.04.020

    Article  PubMed  Google Scholar 

  18. 18.

    Meyer G, Vicaut E, Danays T, Agnelli G, Becattini C, Beyer-Westendorf J, Bluhmki E, Bouvaist H, Brenner B, Couturaud F, Dellas C, Empen K, Franca A, Galie N, Geibel A, Goldhaber SZ, Jimenez D, Kozak M, Kupatt C, Kucher N, Lang IM, Lankeit M, Meneveau N, Pacouret G, Palazzini M, Petris A, Pruszczyk P, Rugolotto M, Salvi A, Schellong S, Sebbane M, Sobkowicz B, Stefanovic BS, Thiele H, Torbicki A, Verschuren F, Konstantinides SV, Investigators P (2014) Fibrinolysis for patients with intermediate-risk pulmonary embolism. N Engl J Med 370(15):1402–1411. https://doi.org/10.1056/NEJMoa1302097

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Kesselman A, Kuo WT (2017) Catheter-directed therapy for acute submassive pulmonary embolism: summary of current evidence and protocols. Tech Vasc Interv Radiol 20(3):193–196. https://doi.org/10.1053/j.tvir.2017.07.009

    Article  PubMed  Google Scholar 

  20. 20.

    Mertens LL, Friedberg MK (2010) Imaging the right ventricle-current state of the art. Nat Rev Cardiol 7(10):551–563. https://doi.org/10.1038/nrcardio.2010.118

    Article  PubMed  Google Scholar 

  21. 21.

    Valsangiacomo Buechel ER, Mertens LL (2012) Imaging the right heart: the use of integrated multimodality imaging. Eur Heart J 33(8):949–960. https://doi.org/10.1093/eurheartj/ehr490

    Article  PubMed  Google Scholar 

  22. 22.

    Orde MM, Puranik R, Morrow PL, Duflou J (2011) Myocardial pathology in pulmonary thromboembolism. Heart 97(20):1695–1699. https://doi.org/10.1136/hrt.2011.226209

    Article  PubMed  Google Scholar 

  23. 23.

    Cok G, Tasbakan MS, Ceylan N, Bayraktaroglu S, Duman S (2013) Can we use CT pulmonary angiography as an alternative to echocardiography in determining right ventricular dysfunction and its severity in patients with acute pulmonary thromboembolism? Jpn J Radiol 31(3):172–178. https://doi.org/10.1007/s11604-012-0164-6

    Article  PubMed  Google Scholar 

  24. 24.

    Contractor SMP, Sharma VK, Gor DM (2002) Role of helical CT in detecting right ventricular dysfunction secondary to acute pulmonary embolism. J Comput Assist Tomogr 26(4):587–591. https://doi.org/10.1097/01.RCT.0000024971.21592.09

    Article  PubMed  Google Scholar 

  25. 25.

    Lim K-E, Chan C-Y, Chu P-H, Hsu Y-Y, Hsu W-C (2005) Right ventricular dysfunction secondary to acute massive pulmonary embolism detected by helical computed tomography pulmonary angiography. Clin Imaging 29(1):16–21. https://doi.org/10.1016/j.clinimag.2004.04.023

    Article  PubMed  Google Scholar 

  26. 26.

    Cotugno M, Orgaz-Molina J, Rosa-Salazar V, Guirado-Torrecillas L, García-Pérez B (2017) Right ventricular dysfunction in acute pulmonary embolism: NT-proBNP vs. troponin T. Med Clín 148(8):339–344. https://doi.org/10.1016/j.medcle.2017.04.007

    Article  Google Scholar 

  27. 27.

    Kaczynska A, Kostrubiec M, Ciurzynski M, Pruszczyk P (2008) B-type natriuretic peptide in acute pulmonary embolism. Clin Chim Acta 398(1–2):1–4. https://doi.org/10.1016/j.cca.2008.07.020

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Alexandru Marginean had access to the full data and takes responsibility for the content of this manuscript, including the data and its analysis. AP, TH, AS, SAB, ML, JF, JB, AS, SN, JC, JP contributed substantially to the study design, data analysis and interpretation, and the writing of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexandru Marginean.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional research committee (University of Chicago Biological Sciences Division Institutional Review Board) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11239_2019_2021_MOESM3_ESM.mov

Online Resource 3 Three-dimensional detail of right ventricular contraction Three-dimensional rendering of the right ventricle showcasing systole (green) and diastole (white mesh outline). The purple circle represents the tricuspid valve and the blue circle represents the pulmonary valve. Supplementary material 3 (MOV 692.2 kb)

Online Resource 1 Correlation between RVOT/Ao and RV/LV ratios with invasively-measured hemodynamics Comparison of the correlation between the RV/LV and RVOT/Ao ratio to invasively-measured right atrial pressure (A), mean pulmonary artery pressure (B), and cardiac output (C). Ao (aortic outflow tract), LV (left ventricle), r (correlation coefficient), RV (right ventricle), RVOT (right ventricular outflow tract). Supplementary material 1 (TIF 896.6 kb)

Online Resource 2 Correlation between biomarkers with invasively-measured hemodynamics Comparison of the correlation between serum proBNP (A), serum lactic acid (B), serum troponin T (C), and PESI Score (D) to invasively-measured right atrial pressure, mean pulmonary artery pressure, and cardiac output. PESI (pulmonary embolism severity index), r (correlation coefficient), * (statistically significant correlation). Supplementary material 2 (TIF 911.2 kb)

Online Resource 3 Three-dimensional detail of right ventricular contraction Three-dimensional rendering of the right ventricle showcasing systole (green) and diastole (white mesh outline). The purple circle represents the tricuspid valve and the blue circle represents the pulmonary valve. Supplementary material 3 (MOV 692.2 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marginean, A., Putnam, A., Hirai, T. et al. Performance of the right ventricular outflow tract/aortic diameter as a novel predictor of risk in patients with acute pulmonary embolism. J Thromb Thrombolysis 50, 165–173 (2020). https://doi.org/10.1007/s11239-019-02021-6

Download citation

Keywords

  • Pulmonary embolism
  • Computed tomography
  • Submassive
  • Massive
  • Risk