Skip to main content

Advertisement

Log in

Functionally stable plasminogen activator inhibitor-1 in a family with cardiovascular disease and vitiligo

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Vitiligo is a common skin condition with a complex pathophysiology characterized by the lack of pigmentation due to melanocyte degeneration. In this study, we investigated PAI-1 antigen (Ag) and activity levels in a 34 year old male with extensive vascular disease, alopecia areata and vitiligo. Fasting PAI-1 Ag and activity levels were measured at 9 a.m. in the subject and family members. Both PAI-1 Ag (67 ± 38 vs. 18.6 ± 6.5 ng/ml, P < 0.001) and specific activity (15.8 ± 10.0 vs. 7.6 ± 6.0 IU/pmol, P < 0.04) levels of PAI-1 were moderately elevated in subjects compared to the controls. PAI-1 kinetic studies demonstrated a markedly enhanced stability of plasma PAI-1 activity in the family members. Specific activity at 16 h was significantly higher than expected activity levels (0.078 ± 0.072 vs. 0.001 ± 0.001 IU/ng/ml, P < 0.001). While the exact mechanism of increased stability of PAI-1 activity in vitiligo is not known, it is likely due to post-translational modifications or increased binding affinity for a stabilizing cofactor. In conclusion, enhanced stability of PAI-1 may contribute to the pathophysiology of vascular disease and associated melanocyte degeneration. Systemic or local treatment with PAI-1 inhibitors may offer a potential treatment alternative to the near orphan status for vitiligo drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yaghoobi R, Omidian M, Bagherani N (2011) Vitiligo: a review of the published work. J Dermatol 38:419–431

    Article  PubMed  Google Scholar 

  2. Miniati A, Weng Z, Zhang B, Stratigos AJ, Nicolaidou E, Theoharides TC (2012) Neuro-immuno-endocine processes in vitiligo pathogenesis. Int J Immunopathol Pharmacol 25(1):1–7

    CAS  PubMed  Google Scholar 

  3. Boissy RE, Dell’anna ML, Picardo M (2012) On the pathophysiology of vitiligo: possible treatment options. Indian J Dermatol Venereol Leprol 78:24–29

    PubMed  Google Scholar 

  4. Ongenae K, Van Geel N, Naeyaert JM (2003) Evidence for an autoimmune pathogenesis of vitiligo. Pigment Cell Res 16:90–100

    Article  PubMed  Google Scholar 

  5. Laberge G, Mailloux CM, Gowan K, Holland P, Bennett DC, Fain PR et al (2005) Early disease onset and increased risk of other autoimmune diseases in familial generalized vitiligo. Pigment Cell Res 18:300–305

    Article  PubMed  Google Scholar 

  6. Moretti S, Spallanzani A, Amato L, Hautmann G, Gallerani I, Fabiani M et al (2002) New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions. Pigment Cell Res 15:87–92

    Article  CAS  PubMed  Google Scholar 

  7. Wang E, McElwee KJ (2011) Etiopathogenesis of alopecia areata: why do our patients get it? Dermatol Ther 24:337–347

    Article  PubMed  Google Scholar 

  8. Safavi KH, Muller SA, Suman VJ, Moshell AN, Melton LJ 3rd (1995) Incidence of alopecia areata in Olmsted County, Minnesota, 1975 through 1989. Mayo Clin Proc 70:628–633

    Article  CAS  PubMed  Google Scholar 

  9. Kos L, Conlon J (2009) An update on alopecia areata. Curr Opin Pediatr 21:475–480

    Article  PubMed  Google Scholar 

  10. Agirbasli M (2005) Pivotal role of plasminogen-activator inhibitor 1 in vascular disease. Int J Clin Pract 59:102–106

    Article  CAS  PubMed  Google Scholar 

  11. Vaughan DE (2005) PAI-1 and atherothrombosis. J Thromb Haemost 3:1879–1883

    Article  CAS  PubMed  Google Scholar 

  12. Eren M, Gleaves LA, Atkinson JB, King LE, Declerck PJ, Vaughan DE (2007) Reactive site-dependent phenotypic alterations in plasminogen activator inhibitor-1 transgenic mice. J Thromb Haemost 5:1500–1508

    Article  CAS  PubMed  Google Scholar 

  13. Dellas C, Loskutoff DJ (2005) Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease. Thromb Haemost 93:631–640

    CAS  PubMed  Google Scholar 

  14. Garg N, Goyal N, Strawn TL, Wu J, Mann KM, Lawrence DA, Fay WP (2010) Plasminogen activator inhibitor-1 and vitronectin expression level and stoichiometry regulate vascular smooth muscle cell migration through physiological collagen matrices. J Thromb Haemost 8:1847–1854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Marshall LJ, Ramdin LS, Brooks T, DPhil PC, Shute JK (2003) Plasminogen activator inhibitor-1 supports IL-8-mediated neutrophil transendothelial migration by inhibition of the constitutive shedding of endothelial IL-8/heparan sulfate/syndecan-1 complexes. J Immunol 171:2057–2065

    Article  CAS  PubMed  Google Scholar 

  16. Lawrence DA, Olson ST, Palaniappan S, Ginsburg D (1994) Engineering plasminogen activator inhibitor 1 mutants with increased functional stability. Biochemistry 33:3643–3648

    Article  CAS  PubMed  Google Scholar 

  17. Berkenpas MB, Lawrence DA, Ginsburg D (1995) Molecular evolution of plasminogen activator inhibitor-1 functional stability. EMBO J 14:2969–2977

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Agirbasli D, Agirbasli M, Williams SM, Phillips JA (2006) Interaction among 5,10 methylenetetrahydrofolate reductase, plasminogen activator inhibitor and endothelial nitric oxide synthase gene polymorphisms predicts the severity of coronary artery disease in Turkish patients. Coron Artery Dis 17:413–417

    Article  PubMed  Google Scholar 

  19. Pampuch A, Kowal K, Bodzenta-Lukaszyk A, Di Castelnuovo A, Chyczewski L, Donati MB et al (2006) The −675 4G/5G plasminogen activator inhibitor-1 promoter polymorphism in house dust mite-sensitive allergic asthma patients. Allergy 61:234–238

    Article  CAS  PubMed  Google Scholar 

  20. Eren M, Painter CA, Atkinson JB, Declerck PJ, Vaughan DE (2002) Age-dependent spontaneous coronary arterial thrombosis in transgenic mice that express a stable form of human plasminogen activator inhibitor-1. Circulation 106:491–496

    Article  CAS  PubMed  Google Scholar 

  21. Gilhar A, Paus R, Kalish RS (2007) Lymphocytes, neuropeptides, and genes involved in alopecia areata. J Clin Investig 117:2019–2027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wasserman D, Guzman-Sanchez DA, Scott K, McMichael A (2007) Alopecia areata. Int J Dermatol 46:121–131

    Article  CAS  PubMed  Google Scholar 

  23. Dudda-Subramanya R, Alexis AF, Siu K, Sinha AA (2007) Alopecia areata: genetic complexity underlies clinical heterogeneity. Eur J Dermatol 17(5):367–374

    CAS  PubMed  Google Scholar 

  24. Dawson SJ, Wiman B, Hamsten A, Green F, Humphries S, Henney AM (1993) The two allele sequence of a common polymorphism in the promoter of the plasminogen activator inhibitor (PAI-1) gene respond differently to interleukin-1 in HepG2 cells. J Biol Chem 268:10739–10745

    CAS  PubMed  Google Scholar 

  25. Arndt PG, Young SK, Worthen GS (2005) Regulation of lipopolysaccharide-induced lung inflammation by plasminogen activator inhibitor-1 through a JNK-mediated pathway. J Immunol 175:4049–4059

    Article  CAS  PubMed  Google Scholar 

  26. Bellei B, Pitisci A, Ottoviani M, Ludovici M, Cota C, Luzi F, Dell’Anna ML, Picardo M (2013) Vitiligo: a possible model of degenerative diseases. PLoS ONE 8:e59782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Skurk T, Hauner H (2004) Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes Relat Metab Disord 28:1357–1364

    Article  CAS  PubMed  Google Scholar 

  28. Bastard JP, Piéroni L, Hainque B (2000) Relationship between plasma plasminogen activator inhibitor 1 and insulin resistance. Diabetes Metab Res Rev 16:192–201

    Article  CAS  PubMed  Google Scholar 

  29. Serrano R, Barrenetxe J, Orbe J, Rodríguez JA, Gallardo N, Martínez C et al (2009) Tissue-specific PAI-1 gene expression and glycosylation pattern in insulin-resistant old rats. Am J Physiol Regul Integr Comp Physiol 297:R1563–R1569

    Article  CAS  PubMed  Google Scholar 

  30. Ozolina A, Strike E, Jaunalksne I, Serova J, Romanova T, Zake LN et al (2012) Influence of PAI-1 gene promoter-675 (4G/5G) polymorphism on fibrinolytic activity after cardiac surgery employing cardiopulmonary bypass. Medicina (Kaunas) 48:515–520

    Google Scholar 

  31. Kaikita K, Fogo AB, Ma L, Schoenhard JA, Brown NJ, Vaughan DE (2001) Plasminogen activator inhibitor-1 deficiency prevents hypertension and vascular fibrosis in response to long-term nitric oxide synthase inhibition. Circulation 104:839–844

    Article  CAS  PubMed  Google Scholar 

  32. Kaikita K, Schoenhard JA, Painter CA, Ripley RT, Brown NJ, Fogo AB et al (2002) Potential roles of plasminogen activator system in coronary vascular remodeling induced by long-term nitric oxide synthase inhibition. J Mol Cell Cardiol 34:617–627

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is funded by Scientific Research and Projects Commission of Marmara University (BAPKO SAG-B-060510-0112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Agirbasli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agirbasli, M., Eren, M., Yasar, S. et al. Functionally stable plasminogen activator inhibitor-1 in a family with cardiovascular disease and vitiligo. J Thromb Thrombolysis 38, 50–56 (2014). https://doi.org/10.1007/s11239-013-1021-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-013-1021-x

Keywords

Navigation