Pareto utility

Abstract

In searching for an appropriate utility function in the expected utility framework, we formulate four properties that we want the utility function to satisfy. We conduct a search for such a function, and we identify Pareto utility as a function satisfying all four desired properties. Pareto utility is a flexible yet simple and parsimonious two-parameter family. It exhibits decreasing absolute risk aversion and increasing but bounded relative risk aversion. It is applicable irrespective of the probability distribution relevant to the prospect to be evaluated. Pareto utility is therefore particularly suited for catastrophic risk analysis. A new and related class of generalized exponential (gexpo) utility functions is also studied. This class is particularly relevant in situations where absolute risk tolerance is thought to be concave rather than linear.

References

  1. Abdellaoui M., Barrios C., Wakker P. P. (2007) Reconciling introspective utility with revealed preference: Experimental arguments based on prospect theory. Journal of Econometrics 138: 356–378

    Article  Google Scholar 

  2. Abramowitz, M., Stegun, I. A. (eds) (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York

    Google Scholar 

  3. Arrow K. J. (1971) Essays in the theory of risk bearing. North-Holland, Amsterdam

    Google Scholar 

  4. Barro R. J. (2006) Rare disasters and asset markets in the twentieth century. Quarterly Journal of Economics 121: 823–866

    Article  Google Scholar 

  5. Barro R. J. (2009) Rare disasters, asset prices, and welfare costs. American Economic Review 99: 243–264

    Article  Google Scholar 

  6. Binswanger H. P. (1980) Attitude toward risk: Experimental measurement in rural India. American Journal of Agricultural Economics 62: 395–407

    Article  Google Scholar 

  7. Box G. E. C., Tiao G. C. (1973) Bayesian inference in statistical analysis. Addison-Wesley, Boston

    Google Scholar 

  8. Burr I. W. (1942) Cumulative frequency functions. Annals of Mathematical Statistics 13: 215–232

    Article  Google Scholar 

  9. Burr I. W., Cislak P. J. (1968) On a general system of distributions: I. Its curve-shape characteristics. II The sample median. Journal of the American Statistical Association 63: 627–635

    Article  Google Scholar 

  10. Castagnoli E., LiCalzi M. (1996) Expected utility without utility. Theory and Decision 41: 281–301

    Article  Google Scholar 

  11. Chiappori, P.-A., & Paiella, M. (2008). Relative risk aversion is constant: Evidence from panel data. Discussion paper no. 5/2008. Department of Economic Studies, University of Naples ‘Parthenope’, Naples.

  12. Denuit M., Eeckhoudt L. (2010) Stronger measures of higher-order risk attitudes. Journal of Economic Theory 145: 2027–2036

    Article  Google Scholar 

  13. de Finetti B. (1952) Sulla preferibilità. Giornale degli Economisti e Annali di Economia 11: 685–709

    Google Scholar 

  14. Eeckhoudt L., Gollier C. (1995) Risk: Evaluation, management and sharing. Harvester Wheatsheaf, Hertfordshire

    Google Scholar 

  15. Friend I., Blume M. E. (1975) The demand for risky assets. American Economic Review 65: 900–922

    Google Scholar 

  16. Gerber H. U. (1979) An introduction to mathematical risk theory. S.S. Huebner Foundation Monograph. Irwin, Homewood, IL

    Google Scholar 

  17. Gollier C. (2001) The economics of risk and time. MIT Press, Cambridge, MA

    Google Scholar 

  18. Guiso L., Paiella M. (2008) Risk aversion, wealth, and background risk. Journal of the European Economic Association 6: 1109–1150

    Article  Google Scholar 

  19. Harrison G. W., List J. A., Towe C. (2007) Naturally occurring preferences and exogenous laboratory experiments: A case study of risk aversion. Econometrica 75: 433–458

    Article  Google Scholar 

  20. Holt C. A., Laury S. K. (2002) Risk aversion and incentive effects. American Economic Review 92: 1644–1655

    Article  Google Scholar 

  21. Ikefuji, M., Laeven, R. J. A., Magnus, J. R., & Muris, C. (2011). Weitzman meets Nordhaus: Expected utility and catastrophic risk in a stochastic economy-climate model. Working paper, Tilburg University.

  22. Johnson N. L., Kotz S., Balakrishnan N. (1995) Continuous univariate distributions (2nd ed.,Vol. 2). Wiley, New York

    Google Scholar 

  23. Köbberling V., Wakker P. P. (2005) An index of loss aversion. Journal of Economic Theory 122: 119–131

    Article  Google Scholar 

  24. Mehra R., Prescott E. C. (1985) The equity premium: A puzzle. Journal of Monetary Economics 15: 145–161

    Article  Google Scholar 

  25. Merton R. C. (1971) Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory 3: 373–413

    Article  Google Scholar 

  26. Mossin J. (1968) Optimal multiperiod portfolio policies. Journal of Business 41: 215–229

    Article  Google Scholar 

  27. Post T., van den Assem M. J., Baltussen G., Thaler R. H. (2008) Deal or no deal? Decision making under risk in a large-payoff game show. American Economic Review 98: 38–71

    Article  Google Scholar 

  28. Pratt J. W. (1964) Risk aversion in the small and in the large. Econometrica 32: 122–136

    Article  Google Scholar 

  29. Rabin M. (2000) Risk aversion and expected-utility theory: A calibration theorem. Econometrica 68: 1281–1292

    Article  Google Scholar 

  30. Saha A. (1993) Expo-power utility: A flexible form for absolute and relative risk aversion. American Journal of Agricultural Economics 75: 905–913

    Article  Google Scholar 

  31. Saha A., Shumway C. R., Talpaz H. (1994) Joint estimation of risk preference structure and technology using expo-power utility. American Journal of Agricultural Economics 76: 173–184

    Article  Google Scholar 

  32. Saha A. (1997) Risk preference estimation in the nonlinear mean standard deviation approach. Economic Inquiry 35: 770–782

    Article  Google Scholar 

  33. Stacy E. W. (1962) A generalization of the gamma distribution. Annals of Mathematical Statistics 33: 1187–1192

    Article  Google Scholar 

  34. Subbotin M. Th. (1923) On the law of frequency of error. Mathematicheskii Sbornik 31: 296–301

    Google Scholar 

  35. Wakker P. P. (2008) Explaining the characteristics of the power (CRRA) utility family. Health Economics 17: 1329–1344

    Article  Google Scholar 

  36. Yaari M. (1969) Some remarks on measures of risk aversion and their uses. Journal of Economic Theory 1: 315–329

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Sjak Smulders and Peter Wakker for helpful discussions, and to the referee for constructive comments. This research was funded in part by the JSPS under grant C-22530177 (Ikefuji) and by the NWO under grant Vidi-2009 (Laeven). An earlier version of this article was circulated under the title ‘Burr utility’.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roger J. A. Laeven.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Ikefuji, M., Laeven, R.J.A., Magnus, J.R. et al. Pareto utility. Theory Decis 75, 43–57 (2013). https://doi.org/10.1007/s11238-012-9293-8

Download citation

Keywords

  • Parametric utility
  • Hyperbolic absolute risk aversion (HARA)
  • Exponential utility
  • Power utility

JEL Classification

  • D81