Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 2, pp 138–145 | Cite as

Morphology and Catalytic Properties of Hierarchical Zeolites with MOR, BEA, MFI, and MTW Topology

Article
  • 9 Downloads

The morphology of hierarchical zeolite nanocrystals with MOR, BEA, MFI, and MTW topology has a significant effect on the accessibility of the Brønsted and Lewis acid centers, the concentration and strength of which are determined by the type and concentration of the heteroelement B, Al, Ga, Ti, Sn, or Zr in the initial reaction mixture. Nanoparticles (0D), nanorods (1D), and nanolayers (2D) of hierarchical zeolites exhibit different catalytic activity in fine organic synthesis.

Key words

hierarchical zeolites hydrothermal synthesis structure-directing agents acid properties catalysis 

Notes

The work was carried out with partial financial support from a target program of scientific investigations of the National Academy of Sciences of Ukraine “New functional compounds and materials of chemical production.”

References

  1. 1.
    J. D. Sherman, Natl. Acad. Sci. USA, 96, 3471-3478 (1999).CrossRefGoogle Scholar
  2. 2.
    J. Čejka, G. Centi, J. Perez-Pariente, and W. J. Roth, Catal. Today, 179, 2-15 (2012).CrossRefGoogle Scholar
  3. 3.
    M. Choi, K. Na, J. Kim, et al., Nature, 461, 246-250 (2009).CrossRefGoogle Scholar
  4. 4.
    K. Na, M. Choi, W. Park, et al., J. Am. Chem. Soc., 132, 4169-4177 (2010).CrossRefGoogle Scholar
  5. 5.
    K. Cho, K. Na, J. Kim, et al., Chem. Mater., 24, 2733-2738 (2012).CrossRefGoogle Scholar
  6. 6.
    R. Kore, R. Sridharkrishna, and R. Srivastava, RSC Adv., 3, 1317-1322 (2013).CrossRefGoogle Scholar
  7. 7.
    J. Jung, C. Jo, K. Cho, and R. Ryoo, J. Mater. Chem., 22, 4637-4640 (2012).CrossRefGoogle Scholar
  8. 8.
    S. Hu, J. Shan, Q. Zhang, et al., Appl. Catal. A, 445/446, 215-220 (2012).Google Scholar
  9. 9.
    Y. Seo, K. Cho, Y. Jung, and R. Ryoo, ACS Catal., 3, 713-720 (2013).CrossRefGoogle Scholar
  10. 10.
    E. Verheyen, C. Jo, M. Kurttepeli, et al., J. Catal., 300, 70-80 (2013).CrossRefGoogle Scholar
  11. 11.
    J. Kim, W. Kim, Y. Seo, et al., J. Catal., 301, 187-197 (2013).CrossRefGoogle Scholar
  12. 12.
    C. Jo, R. Ryoo, N. Šilková, et al., Catal. Sci. Technol., 3, 2119-2129 (2013).Google Scholar
  13. 13.
    J. Přech, P. Eliášová, D. Aldhayan, and M. Kubu, Catal. Today, 243, 134-140 (2015).CrossRefGoogle Scholar
  14. 14.
    K. Na, C. Jo, J. Kim, et al., ACS Catal., 1, 901-907 (2011).CrossRefGoogle Scholar
  15. 15.
    J. Wang, L. Xu, K. Zhang, et al., J. Catal., 288, 16-23 (2012).CrossRefGoogle Scholar
  16. 16.
    W. Chaikittisilp, Y. Suzuki, R. R. Mukti, et al., Angew. Chem. Int. Ed., 52, 3355-3359 (2013).CrossRefGoogle Scholar
  17. 17.
    X. Zhang, D. Liu, D. Xu, et al., Science, 336, 1684-1687 (2012).CrossRefGoogle Scholar
  18. 18.
    A. Inayat, C. Schneidera, and W. Schwiegera, Chem. Commun., 51, 279-281 (2015).CrossRefGoogle Scholar
  19. 19.
    A. V. Shvets, K. M. Konysheva, M. M. Kurmach, and P. S. Yaremov, Fundamental Problems of Creation New Substances and Materials of Chemical Production [in Russian], Akademperiodika, Kiev (2016), pp.157-167.Google Scholar
  20. 20.
    E. M. Konysheva, P. S. Yaremov, Zh. V. Chernenko, et al., Teor. Éksp. Khim., 53, No. 6, 381-387 (2017). [Theor. Exp. Chem., 53, No. 6, 410-416 (2018) (English translation).]Google Scholar
  21. 21.
    A. V. Shvets, N. D. Shcherban, S. V. Kolotilov, Teor. Éksp. Khim., 53, No. 5, 306-314 (2017). [Theor. Exp. Chem., 53, No. 5, 327-337 (2017) (English translation).]Google Scholar
  22. 22.
    M. M. Kurmach, P. S. Yaremov, V. V. Tsyrina, et al., Teor. Éksp. Khim., 51, No. 4, 211-218 (2015). [Theor. Exp. Chem., 51, No. 4, 216-223 (2015) (English translation).]Google Scholar
  23. 23.
    C. Jo, J. Jung, H. S. Shin, et al., Angew. Chem. Int. Ed., 52, 10014-10017 (2013).CrossRefGoogle Scholar
  24. 24.
    W. Schwieger, A. G. Machoke, T. Weissenberger, et al., Chem. Soc. Rev., 45, 3353-3376 (2016).CrossRefGoogle Scholar
  25. 25.
    M. Shamzhy, O. V. Shvets, M. V. Opanasenko, et al., Adv. Porous Mater., 1, 103-113 (2013).CrossRefGoogle Scholar
  26. 26.
    A. Abraham, S.-H. Lee, C.-H. Shin, et al., Phys. Chem. Chem. Phys., 6, 3031-3036 (2004).CrossRefGoogle Scholar
  27. 27.
    M. M. Kurmach, P. S. Yaremov, M. O. Skoryk, and O. V. Shvets, Teor. Éksp. Khim., 52, No. 3, 188-195 (2016). [Theor. Exp. Chem., 52, No. 3, 190-196 (2016) (English translation).]Google Scholar
  28. 28.
    M. M. Kurmach, N. O. Popovych, P. I. Kyriienko, et al., Teor. Éksp. Khim., 53, No. 2, 114-120 (2017). [Theor. Exp. Chem., 53, No. 2, 122-129 (2017) (English translation).]Google Scholar
  29. 29.
    P. I. Kyriienko, O. V. Larina, N. O. Popovych, et al., J. Mol. Catal. A, 424, 27-36 (2016).CrossRefGoogle Scholar
  30. 30.
    P. I. Kyriienko, O. V. Larina, S. O. Soloviev, et al., Catal. Commun., 77, 123-126 (2016).CrossRefGoogle Scholar
  31. 31.
    M. V. Opanasenko, M. V. Shamzhy, C. Jo, et al., ChemCatChem, 6, No. 7, 1919-1927 (2014).CrossRefGoogle Scholar
  32. 32.
    V. R. Rani, N. Srinivas, M. R. Kishan, et al., Green Chem., 3, 305-306 (2014).CrossRefGoogle Scholar
  33. 33.
    A. Shahid, N. S. Ahmed, T. S. Saleh, et al., Catalysts, 7, No. 3, 84-101 (2017).CrossRefGoogle Scholar
  34. 34.
    J.-C. Kim, R. Ryoo, M. Opanasenko, et al., ACS Catal., 5, No. 4, 2596-2604 (2015).CrossRefGoogle Scholar
  35. 35.
    K. M. Konysheva, T. M. Boichuk, and O. V. Shvets, Teor. Éksp. Khim., 52, No. 2, 89-95 (2016). [Theor. Exp. Chem., 52, No. 2, 90-96 (2016) (English translation).]Google Scholar
  36. 36.
    J. Fraissard, V. Gerda, K. I. Patrylak, and Yu. G. Voloshyna, Catal. Today, 122, Nos. 3/4, 338-340 (2007).Google Scholar
  37. 37.
    M. M. Kurmach, O. V. Larina, P. I. Kyriienko, et al., ChemistrySelect, In press.Google Scholar
  38. 38.
    P. P. Upare, Y. K. Hwang, J.-S. Chang, and D. W. Hwang, Ind. Eng. Chem. Res., 51, 4837-4842 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. V. Shvets
    • 1
  • K. M. Konysheva
    • 1
  • M. M. Kurmach
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations