Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 2, pp 122–127 | Cite as

Peculiarities of Self-Organization of Amphiphilic Oligomeric Protic Ionic Liquids of Hyperbranched Structure with the Formation of Various Hierarchical Nanostructures

  • V. V. Shevchenko
  • A. V. Stryutsky
  • O. O. Sobko
  • N. S. Klimenko
  • M. A. Gumenna
Article
  • 25 Downloads

Methods were developed in order to control the hydrophilic and hydrophobic properties of anionic amphiphilic protic ionic liquids with hyperbranched structures. The structurizing ability of the compounds in the condensed state depends on the ratio of hydrophilic and hydrophobic components. Self-organization with the formation of nanosized assemblies in aqueous solution and at the interface also depends on change in the pH and ionic strength of the medium. The obtained data form the basis for creation of materials with promising ionic liquid properties for various electrochemical devices and transport media.

Key words

oligomeric ionic liquids hyperbranched structure self assembly micelles nanoassemblies 

Notes

The authors express their gratitude to Prof. V. V. Tsukruk and also to V. F. Korolovich, PhD (School of Materials Science and Engineering, Georgia Institute of Technology, USA) for assistance in the execution of the investigation and discussion of the results.

The work was carried out with partial financial support of a target program of scientific investigations of the National Academy of Sciences of Ukraine “New functional compounds and materials of chemical production.”

References

  1. 1.
    S. M. Mezhikovskii, A. É. Arinshtein, and R. Ya. Deberdeev, The Oligomeric State of a Substance [in Russian], Nauka, Moscow (2005).Google Scholar
  2. 2.
    W. Xu, P. A. Ledin, V. V. Shevchenko, and V. V. Tsukruk, ACS Appl. Mater. Interfaces, 7, No. 23, 12570-12596 (2015).CrossRefPubMedGoogle Scholar
  3. 3.
    M. Armand, F. Endres, D. R. MacFarlane, et al., Nat. Mater., 8, No. 8, 621-629 (2009).Google Scholar
  4. 4.
    Yu. S. Lipatov, V. V. Shevchenko, V. A. Shrubovich, et al., DAN SSSR, 306, No. 2, 360-364 (1989).Google Scholar
  5. 5.
    Yu. S. Lipatov, V. V. Shevchenko, and A. E. Feinerman, Ukr. Polymer J., 2, No. 2, 85-97 (1993).Google Scholar
  6. 6.
    Yu. S. Lipatov, V. V. Shilov, N. V. Dmitruk, et al., Kolloidn. Zh., 46, No. 4, 691-699 (1984).Google Scholar
  7. 7.
    Yu. S. Lipatov, V. V. Tsukruk, N. V. Dmitruk, et al., Polym. Commun., 24, No. 7, 197-199 (1983).Google Scholar
  8. 8.
    V. V. Shevchenko, A. V. Stryutsky, O. A. Sobko, et al., Polymer Sci. B, 59, No. 4, 379-391 (2017).Google Scholar
  9. 9.
    V. F. Korolovych, A. J. Erwin, A. Stryutsky, et al., Bull. Chem. Soc. Jpn., 90, No. 8, 919-923 (2017).CrossRefGoogle Scholar
  10. 10.
    V. F. Korolovych, P. A. Ledin, A. V. Stryutsky, et al., Macromolecules, 49, No. 22, 8697-8710 (2016).Google Scholar
  11. 11.
    V. V. Shevchenko, A. V. Stryutsky, N. S. Klymenko, et al., Polymer Sci. B, 56, No. 5, 583-592 (2014).Google Scholar
  12. 12.
    V. V. Shevchenko, A. V. Stryutsky, N. S. Klymenko, et al., Polymer, 55, No. 16, 3349-3359 (2014).CrossRefGoogle Scholar
  13. 13.
    A. S. Shaplov, R. Marcilla, and D. Mecerreyes, Electrochim. Acta, 175, 18-34 (2015).CrossRefGoogle Scholar
  14. 14.
    J. Yuan, D. Mecerreyes, and M. Antonietti, Progr. Polym. Sci., 38, No. 7, 1009-1036 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. V. Shevchenko
    • 1
  • A. V. Stryutsky
    • 1
  • O. O. Sobko
    • 1
  • N. S. Klimenko
    • 1
  • M. A. Gumenna
    • 1
  1. 1.Institute of Macromolecular ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations