Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 2, pp 107–113 | Cite as

Formation of Nanostructures Upon Photoexcitation of Surface Plasmon Resonance in Nanocomposites Derived from Textured Gold Films and Chalcogenide Glass

  • M. L. Trunov
  • P. M. Lytvyn
  • V. A. Sterligov
  • F. Lofaj
  • I. V. Prokopenko
Article

Photosensitive plasmon-active structures derived from nanostructured gold films and chalcogenide glass As20Se80 have been prepared. Regular sub-wavelength reliefs are formed on the surface of As20Se80 glass due to the interaction of an amorphous chalcogenide glass film located on the metallic film nanostructures of different geometry and a localized near-field generated by photoexcitation of surface plasmon resonance in the gold films. The shape of the reliefs depends on the polarization of the laser light beam.

Key words

photoinduced mass transport chalcogenide glasses nanoparticles surface plasmon resonance 

Notes

The authors express their gratitude for assistance in the preparation of samples to Dr. Manuel Rodrigues Gonçalves of the Institute of Experimental Physics, Ulm University, Ulm, Germany and Prof. Yuri Kaganovskii of the Department of Physics, Bar-Ilan University, Ramat Gan, Israel.

This work was carried out with the financial support of the Slovak-Ukrainian Project No. SK-UA-2013-0046 (M/127-2016).

References

  1. 1.
    J. L. Person, F. Colas, C. Compere, et al., Sensors Actuators B, 130, No. 2, 771-776 (2008).CrossRefGoogle Scholar
  2. 2.
    R. Jha and R. Sharma, Opt. Lett., 34, No. 6, 749-751 (2009).CrossRefPubMedGoogle Scholar
  3. 3.
    R. Jha and R. Sharma, J. Opt. A, 11, No. 4, 045502-1-7 (2009).CrossRefGoogle Scholar
  4. 4.
    Z. L. Samson, C. Yen, K. F. MacDonald, et al., Phys. Status Solidi RRL, 4, No. 10, 274-276 (2010).CrossRefGoogle Scholar
  5. 5.
    I. Z. Indutnyi, I. I. Robur, P. F. Romanenko, and A. V. Stronski, Proc. SPIE, 1555, 248-257 (1991).Google Scholar
  6. 6.
    A. Saliminia, T. V. Galstian, and A. Villeneuve, Phys. Rev. Lett., 85, 4112-4115 (2000).CrossRefPubMedGoogle Scholar
  7. 7.
    M. L. Trunov, P. M. Lytvyn, P. M. Nagy, and O. M. Dyachyns’ka, Appl. Phys. Lett., 96, No. 11, 111908-1-3 (2010).CrossRefGoogle Scholar
  8. 8.
    M. L. Trunov, P. M. Lytvyn, P. M. Nagy, et al., Phys. Status Solidi b, 251, No. 7, 1354-1362 (2014).CrossRefGoogle Scholar
  9. 9.
    T. W. Ebbersen, H. J. Lezec, H. F. Ghaemi, et al., Nature, 391, 667-669 (1998).CrossRefGoogle Scholar
  10. 10.
    Kuang-Li Lee, Way-Seen Wanga, and Pei-Kuen Wei, Biosens. Bioelectron., 24, 210-215 (2008).CrossRefPubMedGoogle Scholar
  11. 11.
    C. J. Halteen and R. P. Van Duyne, J. Vac. Sci. Technol. A, 13, No. 3, 1553-1558 (1995).CrossRefGoogle Scholar
  12. 12.
    J. R. Krenn, A. Leitner, and J. R. Aussenegg, Encyclopedia of Nanoscience and Nanotechnology, H. S. Nalwa (ed.), American Science Publishers, Valencia, CA, 3, No. 1, 414-419 (2004).Google Scholar
  13. 13.
    J. Kim, K. L.-B. Song, and S. Q. Lee, J. Microsc., 209, 236-240 (2003).CrossRefPubMedGoogle Scholar
  14. 14.
    H. J. Maas, J. Heimel, H. U. Fuchs, et al., J. Microsc., 209, 241-248 (2003).CrossRefPubMedGoogle Scholar
  15. 15.
    R. Hillenbrand, P. Keilmann, P. Hanarp, et al., Appl. Phys. Lett., 83, No. 2, 368-370 (2003).CrossRefGoogle Scholar
  16. 16.
    P. G. Kik, S. A. Maier, and H. A. Atwater, Mat. Res. Soc. Symp. Proc., 705, Y3.6-Y3.12 (2002).Google Scholar
  17. 17.
    Y. Zou, D. Zhang, H. Lin, et al., Adv. Opt. Mater., 2, 478-486 (2014).CrossRefGoogle Scholar
  18. 18.
    S. N. Yannopoulos and M. L. Trunov, Phys. Status Solidi b, 246, No. 8, 1773-1785 (2009).CrossRefGoogle Scholar
  19. 19.
    M. L. Trunov, P. M. Lytvyn, and O. M. Dyachyns’ka, Appl. Phys. Lett., 97, No. 3, 031905-1-3 (2010).CrossRefGoogle Scholar
  20. 20.
    V. Takáts, M. L. Trunov, K. Vad, et al., Mater. Lett., 160, 558-561 (2015).CrossRefGoogle Scholar
  21. 21.
    Y. Kaganovskii, D. L. Beke, S. Charnovych, et al., J. Appl. Phys., 110, No. 6, 063502-1-5 (2011).CrossRefGoogle Scholar
  22. 22.
    W. Rechberger, A. Hohenau, A. Leitner, et al., J. Appl. Phys., 220, Nos. 1-3, 137-141 (2003).Google Scholar
  23. 23.
    M. Meier, A. Wokaun, and P. F. Liao, J. Opt. Soc. Am. B, 2, No. 6, 931-949 (1985).CrossRefGoogle Scholar
  24. 24.
    K. Carron, W. Fluhr, M. Meier, et al., J. Opt. Soc. Am. B, 3, No. 3, 430-440 (1986).CrossRefGoogle Scholar
  25. 25.
    B. Lamprecht, G. Schider, and R. T. Leclmer, Phys. Rev. Lett., 84, No. 20, 4721-4724 (2000).CrossRefPubMedGoogle Scholar
  26. 26.
    B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A, 11, No. 4, 1491-1499 (1994).CrossRefGoogle Scholar
  27. 27.
    L. Novotny, D. W. Pohl, and B. Hecht, Opt. Lett., 20, No. 9, 970-972 (1995).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. L. Trunov
    • 1
  • P. M. Lytvyn
    • 2
  • V. A. Sterligov
    • 2
  • F. Lofaj
    • 3
  • I. V. Prokopenko
    • 2
  1. 1.Institute for Information RecordingNational Academy of Sciences of UkraineKyivUkraine
  2. 2.V. E. Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine
  3. 3.Institute of Materials Research of Slovak Academy of SciencesKošiceSlovak Republic

Personalised recommendations