Skip to main content
Log in

Removal of a Commercial Dye, Alizarin Red, by Solar Photocatalysis Involving the Heterosystem ZnO–SnO2

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Semiconductor ZnO–SnO2 heterostructures exhibiting higher photocatalytic activity than individual zinc and tin oxides in degradation of alizarin red S in aqueous solutions under sunlight irradiation were obtained. The optimal conditions for the process were determined, and it was shown that degradation follows a pseudo-first-order kinetics in the framework of the Langmuir–Hinshelwood model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. E. Brillas and C. A. Martínez-Huitle, Appl. Catal. B, 604, 166-167 (2015).

    Google Scholar 

  2. C. A. Martínez-Huitle and E. Brillas, Appl. Catal. B, 106, 3-4 (2009).

    Google Scholar 

  3. M. A. Rauf, M. A. Meetani, and S. Hisaindee, Desalination, 14, 1-3 (2011).

    Google Scholar 

  4. J. L. Domingo and M. Nadal, Environ. Res., 110, 145 (2016).

    Google Scholar 

  5. S. K. Kansal, R. Lamba, S. K. Mehta, and A. Umar, Mater. Lett., 386, 106 (2013).

    Google Scholar 

  6. R. Satheesh, K. Vignesh, A. Suganthi, and M. Rajaraja, J. Environ. Chem. Eng., 1957, 2 (2014).

    Google Scholar 

  7. D. A. Vallero, Environmental Contaminants, Academic Press, New York (2004), Ch. 9, pp. 435-497.

  8. D. B. Warheit and C. M. Sayes, Nanoengineering, P. I. Dolez (ed.), Elsevier, Amsterdam (2015), Ch. 1.2, pp. 42-54.

  9. A. Tsaboula, E. N. Papadakis, Z. Vryzas, et al., Environ. Int., 91, 78-93 (2016).

    Article  CAS  Google Scholar 

  10. J. Haider and M. S. J. Hashmi, Compreh. Mater. Proc., 8, 7-33 (2014).

    Article  Google Scholar 

  11. H. F. Hemond and E. J. Fechner, Chemical Fate and Transport in the Environment, Elsevier, Amsterdam (2015), pp. 75-218.

    Book  Google Scholar 

  12. H. Bouchaaba, B. Bellal, R. Maachi, et al., J. Taiwan Inst. Chem. Eng., 58, 310-317 (2016).

  13. B. Sørensen, Renewable Energy, Academic Press, Boston (2011), pp. 337-531.

    Book  Google Scholar 

  14. H. Mekatel, S. Amokrane, B. Bellal, et al., Chem. Eng. J., 200-202, 611-618 (2012).

  15. S. Giannakis, M. Voumard, D. Grandjean, et al., Water Res., 102, 505-515 (2016).

    Article  CAS  Google Scholar 

  16. S. Cataldo, A. Iannì, V. Loddo, et al., Sep. Purif. Technol., 171, 101-111 (2016).

    Article  CAS  Google Scholar 

  17. M. Brienza, M. M. Ahmed, A. Escande, et al., Chemosphere, 148, 473-480 (2016).

    Article  CAS  Google Scholar 

  18. S. O. Ganiyu, E. D. Van Hullebusch, M. Cretin, et al., Sep. Purif. Technol., 156, 891-914 (2015).

    Article  CAS  Google Scholar 

  19. J. R. Alvarez-Corena, J. A. Bergendahl, and F. L. Hart, J. Environ. Manage., 181, 544-551 (2016).

    Article  CAS  Google Scholar 

  20. H. Sudrajat and S. Babel, Mater. Res. Bull., 83, 369-378 (2016).

    Article  CAS  Google Scholar 

  21. M. Maszenan, Y. Liu, and W. J. Ng, Biotechnol. Adv., 111-123 (2011).

  22. Y. Zhang, X. Xiong, Y. Han, et al., Chemosphere, 88, 145-154 (2012).

    Article  CAS  Google Scholar 

  23. J. T. Alexander, F. I. Hai, and T. M. Al-aboud, J. Environ. Manage., 111, 195-207 (2012).

    Article  CAS  Google Scholar 

  24. G. P. Treweek and J. M. Montgomery, Artificial Recharge of Groundwater, T. Asano (ed.), Butterworth Publ., Boston, MA (1985), pp. 205-248.

  25. C. Perego, R. Bagatin, M. Tagliabue, and R. Vignola, Micropor. Mesopor. Mater., 166, 37-49 (2013).

    Article  CAS  Google Scholar 

  26. I. S. Arvanitoyannis and T. H. Varzakas, Waste Manage. Food Ind., 703-761 (2008).

  27. F. I. Hai and K. Yamamoto, Treatise Water Sci., 4, 571-613 (2011).

    Article  CAS  Google Scholar 

  28. I. Nitoi, P. Oancea, L. Constantin, et al., J. Environ. Protect. Ecol., 17, 315-322 (2016).

    CAS  Google Scholar 

  29. M. Ihos, C. Lazau, F. Manea, et al., J. Environ. Protect. Ecol., 17, 307-314 (2016).

    CAS  Google Scholar 

  30. M. H. Habibi and M. Mardani, Spectrochim. Acta A, 137, 267-270 (2015).

    Article  CAS  Google Scholar 

  31. R. Murugan, V. J. Babu, M. M. Khin, et al., Mater. Lett., 97, 47-51 (2013).

    Article  CAS  Google Scholar 

  32. Y. Jin, M. Wu, G. Zhao, and M. Li, Chem. Eng. J., 168, 1248-1255 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bouchaaba.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 53, No. 6, pp. 388-392, November-December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchaaba, H., Bellal, B. & Trari, M. Removal of a Commercial Dye, Alizarin Red, by Solar Photocatalysis Involving the Heterosystem ZnO–SnO2. Theor Exp Chem 53, 417–422 (2018). https://doi.org/10.1007/s11237-018-9540-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-018-9540-3

Key words

Navigation