Advertisement

Theoretical and Experimental Chemistry

, Volume 53, Issue 6, pp 410–416 | Cite as

Effect of Nature of Heteroelement (Ba, Ga, Al) on Adsorption and Acid Characteristics of Hierarchical Porous Zeolites of MOR, BEA, and MTW Structural Types

  • K. M. Konysheva
  • P. S. Yaremov
  • Zh. V. Chernenko
  • S. M. Filonenko
  • O. V. Shvets
Article
  • 45 Downloads

The strength of the acid sites in isostructural hierarchical porous zeolites increases in the order BSiO < GaSiO < AlSiO, and the concentration in the structural types increases in the order MTW < BEA < MOR. Zeolite materials with BEA and MOR topology, which consist of nanocrystals with ultrathin-layer morphology, are characterized by a marked decrease of the adsorption potential compared with isostructural materials with nanorods or nanosphere morphology due to a 1.5-fold decrease in the isosteric heats of adsorption of triethylamine.

Key words

hierarchical porous zeolites gemini-type surfactants nanolayers nanoparticles nanorods 

References

  1. 1.
    A. Corma, Chem. Rev., 97, No. 6, 2373-2420 (1997).CrossRefGoogle Scholar
  2. 2.
    O. C. Gobin, S. J. Reitmeier, A. Jentys, and J. A. Lercher, J. Phys. Chem. C, 113, No. 47, 20435-20444 (2009).CrossRefGoogle Scholar
  3. 3.
    J. Jung, C. Jo, K. Cho, and R. Ryoo, J. Mater. Chem., 22, No. 11, 4637-4640 (2012).CrossRefGoogle Scholar
  4. 4.
    K. Na, Ch. Jo, J. Kim, et al., Science, 333, No. 6040, 328-332 (2011).CrossRefGoogle Scholar
  5. 5.
    A. V. Shvets, K. M. Konysheva, M. M. Kurmach, and O. S. Yaremov, Fundamental Problems in Creation of New Substances and Materials in Chemical Production [in Russian], Akademperiodika, Kiev (2016), pp. 157-167.Google Scholar
  6. 6.
    M. N. Kurmach, P. S. Yaremov, V. V. Tsyrina, et al., Teor. Éksp. Khim., 51, No. 4, 211-218 (2015). [Theor. Exp. Chem., 51, No. 4, 216-223 (2015) (English translation).]Google Scholar
  7. 7.
    K. M. Konysheva, T. M. Boichuk, and O. V. Shvets, Teor. Éksp. Khim., 52, No. 2, 89-95 (2016). [Theor. Exp. Chem., 52, No. 2, 90-96 (2016) (English translation).]Google Scholar
  8. 8.
    S. G. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press, New York (1982).Google Scholar
  9. 9.
    E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc., 73, No. 1, 373-380 (1951).CrossRefGoogle Scholar
  10. 10.
    A. Saito and C. Foley, AIChE J., 37, No. 3, 429-436 (1991).CrossRefGoogle Scholar
  11. 11.
    P. Hudec, A. Smieskova, Z. Zidek, et al., Stud. Surface Sci. Catal., 142, 1587-1594 (2002).CrossRefGoogle Scholar
  12. 12.
    K. Kim, R. Ryoo, H.-D. Jang, and M. Choi, J. Catal., 288, 115-123 (2012).CrossRefGoogle Scholar
  13. 13.
    C. A. Emeis, J. Catal., 141, No. 2, 347-354 (1993).CrossRefGoogle Scholar
  14. 14.
    C. Jo, R. Ryoo, N. Žilková, et al., Catal. Sci. Technol., 3, No. 8, 2119-2129 (2013).CrossRefGoogle Scholar
  15. 15.
    M. Shamzhy, O. V. Shvets, M. V. Opanasenko, et al., Adv. Porous Mater., 1, No. 1, 103-113 (2013).CrossRefGoogle Scholar
  16. 16.
    H. Pan, J. A. Ritter, and P. B. Balbuena, Langmuir, 14, 6323-6327 (1998).CrossRefGoogle Scholar
  17. 17.
    J. Koubek, J. Volf, and J. Pašek, J. Catal., 38, 385-393 (1975).CrossRefGoogle Scholar
  18. 18.
    G. Feng, D. Yang, D. Kong, et al., RSC Adv., 4, No. 89, 47906-47920 (2014).CrossRefGoogle Scholar
  19. 19.
    L. Kang, W. Deng, T. Zhang, et al., Micropor. Mesopor. Mater., 115, 261-266 (2008).CrossRefGoogle Scholar
  20. 20.
    A. V. Kiselev, Disc. Farad. Soc., 52, 14-19 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. M. Konysheva
    • 1
  • P. S. Yaremov
    • 1
  • Zh. V. Chernenko
    • 1
  • S. M. Filonenko
    • 1
  • O. V. Shvets
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations