Skip to main content
Log in

Effect of Phase Composition of Superconductor Y3Ba5Cu8O18+δ on Its Conducting Characteristics

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The effect of the method of synthesis on the crystallographic parameters, electrical properties, and oxygen nonstoichiometry of superconducting cuprate with nominal composition Y3Ba5Cu8O18+δ was investigated. The samples were synthesized by a solid state reaction (sample A), by coprecipitation of the hydroxocarbonates (sample B), and by the sol–gel technique (sample C). According to data from X-ray diffraction (XRD) and the temperature dependence of the specific resistance a single-phase superconductor is formed in the sol–gel method and has the highest critical temperature for transition to the superconducting state (Tc = 95 K), whereas samples A and B contain impurity phases and have lower critical temperatures for transition (92 and 87 K, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. A. Nedyl’ko, O. G. Dzyaz’ko, and M. A. Zelen’ko, High-Temperature Superconductivity [in Ukrainian], VPTs Kyiv University, Kyiv (2010).

    Google Scholar 

  2. U. Topal and M. Akdogan, J. Supercond. Nov. Magn., 24, No. 5, 1815-1820 (2011).

    Article  CAS  Google Scholar 

  3. G. F. Voronin and S. A. Degterov, Physica C, 176, Nos. 4-6, 387-408 (1991).

    Article  CAS  Google Scholar 

  4. C. Park and R. L. Snyder, J. Am. Ceram. Soc., 78, No. 12, 3171-3194 (1995).

    Article  CAS  Google Scholar 

  5. S. Gholipour, V. Daadmehr, A. T. Rezakhani, et al., J. Supercond. Nov. Magn., 25, No. 7, 2253-2258 (2012).

    Article  CAS  Google Scholar 

  6. S. Nakajima, M. Kikuchi, Y. Syono, et al., Physica C, 158, No. 3, 471 (1989).

    Article  CAS  Google Scholar 

  7. J. L. Tallon, D. M. Pooke, R. G. Buckley, et al., Phys. Rev. B, 41, No. 10, 7220-7723 (1990).

    Article  CAS  Google Scholar 

  8. T. Fukushima, S. Horii, H. Ogino, et al., Appl. Phys. Express, 1, No. 11, 111701-111702 (2008).

    Article  Google Scholar 

  9. A. Matsushita, K. Fukuda, Y. Yamada, et al., Sci. Technol. Adv. Mater., 8, No. 6, 477-483 (2007).

    Article  CAS  Google Scholar 

  10. P. Udomsamuthirun, T. Kruaehong, T. Nilkamjon, et al., J. Supercond. Nov. Magn., 23, No. 7, 1377-1380 (2010).

    Article  CAS  Google Scholar 

  11. A. Aliabadi, Y. A. Farshchi, and M. Akhavan, Physica C, 469, No. 22, 2012-2014 (2009).

    Article  CAS  Google Scholar 

  12. U. Topal, M. Akdogan, and H. Ozkan, J. Supercond. Nov. Magn., 24, No. 7, 2099-2102 (2011).

    Article  CAS  Google Scholar 

  13. A. Aliabadi, Y. Akhavan-Farshchi, and M. Akhavan, J. Supercond. Nov. Magn., 27, No. 3, 741-748 (2014).

    Article  CAS  Google Scholar 

  14. T. Kruaehong, Int. J. Phys. Sci., 9, No. 16, 360-367 (2014).

    Article  Google Scholar 

  15. S. Sujinnapram, P. Udomsamuthirun, T. Kruaehong, et al., Bull. Mater. Sci., 34, No. 5, 1053-1057 (2011).

    Article  CAS  Google Scholar 

  16. A. Heidari, S. Vedad, N. Heidari, et al., Materials, 5, No. 5, 882-888 (2012).

    Article  CAS  Google Scholar 

  17. A. Esmaeili, H. Sedghi, M. Amniat-Talab, et al., Eur. Phys. J. B, 79, No. 4, 443-447 (2011).

  18. N. Akduran, J. Low Temp. Phys., 168, Nos. 5/6, 323-333 (2012).

    Article  CAS  Google Scholar 

  19. S. Kutuk, S. Bolat, C. Terzioglu, and S. Altintas, J. Alloy Compd., 650, No. 46, 159-164 (2015).

    Article  CAS  Google Scholar 

  20. D. Wang, A. Sun, P. Shi, et al., J. Supercond. Nov. Magn., 27, No. 10, 2365-2369 (2014).

    Article  CAS  Google Scholar 

  21. N. Zarabinia, V. Daadmehr, F. Shahbaz Tehran, et al., Procedia Mater. Sci., 11, 242-247 (2015).

    Article  CAS  Google Scholar 

  22. M. Akyol, A. O. Ayaş, C. Akca, et al., Bull. Mater. Sci., 38, No. 5, 1231-1237 (2015).

    Article  CAS  Google Scholar 

  23. I. V. Fesych, S. A. Nedil’ko, O. G. Dzyaz’ko, and V. V. Boklashchuk, Fiz. Khim. Tverd. Tila, 13, No. 4, 977-982 (2012).

    CAS  Google Scholar 

  24. E. V. Antipov and A. M. Abakumov, Usp. Fiz. Nauk, 178, No. 2, 190-202 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Pilipenko.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 52, No. 6, pp. 342-347, November-December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilipenko, A.O., Nedilko, S.A., Dziazko, A.G. et al. Effect of Phase Composition of Superconductor Y3Ba5Cu8O18+δ on Its Conducting Characteristics. Theor Exp Chem 52, 342–348 (2017). https://doi.org/10.1007/s11237-017-9488-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-017-9488-8

Key words

Navigation