Enhanced target detection using a new combined sonar waveform design

Abstract

In this paper, a method for combining wideband and narrowband waveforms is proposed to improve target detection in shallow water environments. In this regard, a sonar waveform design suitable for target speed has been proposed too. The method uses a wideband frequency-modulated waveform for high range resolution in a reverberation environment and the Doppler-sensitive (DS) waveform to improve the detection of moving targets. The proposed combined waveform is mathematically modeled, and the Calculating of ambiguity function (AF) is performed. The AF and autocorrelation function (ACF) of the designed waveform indicate both DS and fair range resolution features simultaneously exist. So the initial range resolution for target detection is preserved. The Peak to Sidelobe level (PSL) ratio of the proposed waveform is at least 25 dB more than the previous state of the art waveforms. Calculating the Q-function criterion for the designed waveform reveals the superior reverberation suppression and detection performance with respect to the state of the art waveforms. After calculating the reverberation channel model, waveform echo, and detection of the target, the probability of detection (Pd) versus signal-to-reverberation ratio (SRR) was simulated by the Monte Carlo method. It was shown that the proposed waveform improved the probability of target detection by 20 dB, comparing to the base waveforms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Hodges, R. P. (2011). Underwater acoustics analysis, design, and performance of SONAR (1st ed.). Hoboken: Wiley.

    Google Scholar 

  2. 2.

    Li, Q. (2012). Digital sonar design in underwater acoustic. Heidelberg: Springer.

    Google Scholar 

  3. 3.

    Blunt, S. D., & Mokole, E. L. (2016). An overview of radar waveform diversity. IEEE Aerospace and Electronic Systems Magazine, 31(11), 2–42.

    Article  Google Scholar 

  4. 4.

    Yao, Y., Zhao, J., & Wu, L. (2019). Cognitive design of radar waveform and the receive filter for multitarget parameter estimation. Journal of Optimization Theory and Applications, 181, 684–705.

    Article  Google Scholar 

  5. 5.

    Zhang, Y.-X., et al. (2017). Frequency-domain range sidelobe correction in stretch processing for wideband LFM radars. IEEE Transactions on Aerospace and Electronic Systems, 53(1), 111–121.

    Article  Google Scholar 

  6. 6.

    Nusenu, S. Y., Chen, H., & Wang, W.-Q. (2018). OFDM chirp radar for adaptive target detection in low grazing angle. IET Signal Process, 12(5), 613–619.

    Article  Google Scholar 

  7. 7.

    Levanon, N., Cohen, I., & Itkin, P. (2017). Complementary pair radar waveforms–evaluating and mitigating some drawbacks. IEEE A&E Systems Magazine, 32, 40–50.

    Article  Google Scholar 

  8. 8.

    Hague, D. A., & Buck, J. R. (2019). An experimental evaluation of the generalized sinusoidal frequency-modulated waveform for active sonar systems. The Journal of the Acoustical Society of America, 145, 3741.

    Article  Google Scholar 

  9. 9.

    Alaie, M. B., & Olamaei, S. A. (2020). Waveform design for TDM-MIMO radar systems. IEEE, Signal Processing, 167, 107307.

    Article  Google Scholar 

  10. 10.

    He, H., Li, J., & Stoica, P. (2012). Waveform design for active sensing systems: A computational approach (pp. 88–102). New York, NY: Cambridge University Press.

    Google Scholar 

  11. 11.

    Song, J., Babu, P., & Palomar, D. P. (2016). Sequence design to minimize the weighted integrated and peak side lobe levels. IEEE Transactions on Signal Processing, 64(8), 2051–2064. https://doi.org/10.1109/TSP.2015.2510982.

    Article  Google Scholar 

  12. 12.

    Fan, W., Liang, J., Yu, G., So, H. C., & Lu, G. (2020). Minimum local peak side lobe level waveform design with correlation and/or spectral constrains. Signal Processing, 171, 107450.

    Article  Google Scholar 

  13. 13.

    Sankuru, S. P., & Babu, P. (2020). Designing the unimodular sequence with good auto-correlation properties via block majorization-minimization method. Signal Processing, 176, 107707.

    Article  Google Scholar 

  14. 14.

    Waite, A. D. (2001). Sonar for practising engineers (3rd ed.). Hoboken: Wiley.

    Google Scholar 

  15. 15.

    Wang, F., Du, S., Sun, W., Huang, Q., & Su, J. (2017). A method of velocity estimation using composite hyperbolic frequency-modulated signals in active sonar. The Journal of the Acoustical Society of America, 141, 3117.

    Article  Google Scholar 

  16. 16.

    Polak, L., & Milos, J. (2020). Performance analysis of LoRa in the 2.4 GHz ISM band: Coexistence issues with Wi-Fi. Telecommunication Systems, 74, 299–309. https://doi.org/10.1007/s11235-020-00658-w.

    Article  Google Scholar 

  17. 17.

    Yin, J., Men, W., Han, X., & Guo, L. (2020). The integrated waveform for continuous active sonar detection and communication. IET Radar, Sonar & Navigation, 14(9), 1382–1390.

    Article  Google Scholar 

  18. 18.

    Zhang, Q., Lu, G., Zhang, C., et al. (2020). Development of arbitrary waveform torsional vibration signal generator. Telecommunication Systems. https://doi.org/10.1007/s11235-020-00692-8.

    Article  Google Scholar 

  19. 19.

    Deferrari, H., & Wylie, J. (2013). Ideal signals and processing for continuous active sonar. In Proceedings of the meetings on acoustics (pp. 55–58). Montreal, QC, Canada.

  20. 20.

    Huang, T., & Wang, T. (2019). Research on analyzing and processing methods of ocean sonar signals. In D. Gong, H. Zhu, & R. Liu, R. (Eds.), Selected topics in coastal research: Engineering, industry, economy, and sustainable development (pp. 208–212). Journal of Coastal Research, Special Issue No. 94.

  21. 21.

    Guan, C., Zhou, Z., & Zeng, X. (2019). Optimal waveform design using frequency modulated pulse trains for active sonar. Sensors, 19(1), 4262. https://doi.org/10.3390/s19194262.

    Article  Google Scholar 

  22. 22.

    Baggenstoss, P. M. (2013). Specular decomposition of active sonar returns using combined waveforms. IEEE Transactions on Aerospace and Electronic Systems, 49(4), 2509–2521.

    Article  Google Scholar 

  23. 23.

    Li, C.-X., Guo, M.-F., & Zhao, H.-F. (2020). An iterative deconvolution-time reversal method with noise reduction, a high resolution and sidelobe suppression for active sonar in shallow water environments. Sensors, 20, 2844.

    Article  Google Scholar 

  24. 24.

    Lee, S., & Lim, J. S. (2019). (2019) Reverberation suppression using non-negative matrix factorization to detect low-Doppler target with continuous wave active sonar. EURASIP Journal on Advances in Signal Processing, 1, 1–18. https://doi.org/10.1186/s13634-019-0608-6.

    Article  Google Scholar 

  25. 25.

    Hague, D. A., & Buck, J. R. (2017). The generalized sinusoidal frequency-modulated waveform for active sonar. IEEE Journal of Oceanic Engineering, 42(1), 109–123.

    Google Scholar 

  26. 26.

    Hague, D. A. (2020). Adaptive transmit waveform design using multi-tone sinusoidal frequency modulation. arXiv preprint https://arxiv.org/abs/2002.10159. Accepted 24 February 2020.

  27. 27.

    Touati, N., Tatkeu, C., Chonavel, T., & Rivenq, A. (2016). Design and performance evaluation of new costas-based radar waveforms with pulse coding diversity. IET Radar, Sonar & Navigation, 10(5), 877–891.

    Article  Google Scholar 

  28. 28.

    Guan, C., Zhou, Z., & Zeng, X. (2020). A phase-coded sequence design method for active sonar. Sensors, 20, 4659.

    Article  Google Scholar 

  29. 29.

    Trider, R. C. (2012). Signal investigation for low-frequency active (LFA) sonar, defense research, and development. Canada—Atlantic.

  30. 30.

    Qian, Q., Cui, Y., Wang, H., et al. (2020). REPAIR: fragile watermarking for encrypted speech authentication with recovery ability. Telecommunication Systems. https://doi.org/10.1007/s11235-020-00684-8.

    Article  Google Scholar 

  31. 31.

    Jin, Y., Wang, H. Q., Jiang, W. D., & Zhuang, Z. W. (2013). Complementary based chaotic phase-coded waveforms design for MIMO radar. IET Radar, Sonar & Navigation, 7(4), 371–382.

    Article  Google Scholar 

  32. 32.

    Arora, K., Singh, J., & Randhawa, Y. S. (2020). A survey on channel coding techniques for 5G wireless networks. Telecommunication Systems, 73, 637–663. https://doi.org/10.1007/s11235-019-00630-3.

    Article  Google Scholar 

  33. 33.

    Abraham, D. A. (2019). Underwater acoustic signal processing modeling, detection, and estimation. Berlin: Springer.

    Google Scholar 

  34. 34.

    Coxson, G. E. (2019). Biosonar inspiration for radar waveform design. The Journal of the Acoustical Society of America, 145, 1700.

    Article  Google Scholar 

  35. 35.

    Han, J., Zhan, L., & Leus, G. (2016). Partial FFT demodulation for MIMO-OFDM over time-varying underwater acoustic channels. IEEE Signal Processing Letters, 23(2), 282–286.

    Google Scholar 

  36. 36.

    Zaytsev, G. V., & Khzmalyan, A. D. (2020). A family of optimal window functions for spectral analysis with the spectrum sidelobe falloff rate multiple of 12 dB per octave. Journal of Communications Technology and Electronics, 65, 502–515.

    Article  Google Scholar 

  37. 37.

    Levanon, N., & Mozeson, E. (2004). Radar signals (1st ed.). Hoboken, NJ: Wiley. https://doi.org/10.1002/0471663085 (ISBN 9780471663089).

    Google Scholar 

  38. 38.

    Etter, P. C. (2013). Underwater acoustic modeling and simulation (4th ed.). London: E&FN SPON.

    Google Scholar 

  39. 39.

    Chotiros, N. P. (2010). Non-Rayleigh distributions in underwater acoustic reverberation in a patchy environment. IEEE Journal of Oceanic Engineering, 35(2), 236–241.

    Article  Google Scholar 

  40. 40.

    Lee, W.-J., & Stanton, T. K. (2016). Statistics of broadband echoes: Application to acoustic estimates of numerical density of fish. IEEE Journal of Oceanic Engineering, 41(3), 709–723.

    Article  Google Scholar 

  41. 41.

    Mahafza, B. R. (2013). Radar systems analysis and design using Matlab. Boca Raton: CRC Press.

    Google Scholar 

  42. 42.

    Bessemer, M., Djebbar, A. B., Zouggaret, A., et al. (2020). Joint channel estimation and data detection for OFDM based cooperative system. Telecommunication Systems, 73, 545–556. https://doi.org/10.1007/s11235-019-00622-3.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hadi Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pakdel Azar, O., Amiri, H. & Razzazi, F. Enhanced target detection using a new combined sonar waveform design. Telecommun Syst (2021). https://doi.org/10.1007/s11235-021-00761-6

Download citation

Keywords

  • Waveform design
  • Q function
  • Reverberation
  • Sonar
  • Probability of detection
  • Doppler-sensitive waveform