Dynamic MODCOD and power allocation in DVB-S2: a hybrid intelligent approach

Abstract

Adaptive communication for is one of the hottest areas of research in the telecommunication systems including wireless broadcast systems. This is primarily accomplished for sake of boosting the transmission throughput with enhanced quality of service and ideal link utilization. In adaptive communication, various radio transmission parameters like modulation symbol, code-rate and power etc. are carefully chosen according to the erratic channel state information on the link. Digital video broadcast—second generation (DVB-S2) has an inbuilt support for adaptive coding and modulation (ACM). However, power adaptation is still a necessity because of power constraint in downlink where satellite has a limited power bank. Moreover, different downlinks have distinct transmit power requirements due to diverse ambient on earth receivers like rainy, foggy, stormy and with clear sky etc., hence flat transmit power distribution among all the ground receivers may not be a good idea at all. To utilize the ACM feature in DVB-S2 and to additionally adapt power, in this paper, an adaptive modulation, coding (MODCOD) and power scheme is proposed. By investigating a fuzzy system and differential evolution algorithm, to select the set of MODCODs and optimum power vector, respectively, for the next transmission interval. From the simulation results it is apparent that the proposed scheme is promising in terms of efficient link and transmit power utilization as well as quality of service compared to the schemes in the literature with flat power distribution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 9
Fig. 8
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    ETSI EN 302 307. (2005). Digital video broadcasting (DVB); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications. ETSI European Standard, v.1.1.

  2. 2.

    Gardikis, G., Zotos, N., & Kourtis, A. (2009). Satellite media broadcasting with adaptive coding and modulation. International Journal of Digital Multimedia Broadcasting. https://doi.org/10.1155/2009/879290.

    Article  Google Scholar 

  3. 3.

    Smolnikar, M., Javornik, T., Mohorcic, M., & Berioli, M. (2008). DVB-S2 adaptive coding and modulation for HAP communication. In IEEE Vehicular technology conference (pp. 2947–2951).

  4. 4.

    Morello, A., & Mignone, V. (2006). DVB-S2: The second generation standard for satellite broad-band services. Proceedings of the IEEE, 94(1), 210–227.

    Article  Google Scholar 

  5. 5.

    Anastasiadou, N., Gardikis, G., Nikiforiadis, A., & Pangalos, S. (2012). Adaptive coding and modulation-enabled satellite triple play over DVB-S2 (digital video broadcasting-satellite-second generation): a techno-economic study. International Journal of Satellite Communication and Neworking, 30(3), 99–112.

    Article  Google Scholar 

  6. 6.

    White Paper. (2008). iDirect evolution DVB-S2/ACM system. www.idirect.net.

  7. 7.

    Techniacl Report: Rain fade management in 3rd generation Ka-band satellite systems. KaComm Communications Pty Ltd, Salina.

  8. 8.

    Ojo, J. S., Akpan, V. A., Ajileye, O. G., & Ojo, O. L. (2017). QoS Improvement using intelligent algorithm under dynamic tropical weather for earth-space satellite applications. International Journal of Computer and Information Engineering, 11(9), 1104–1110.

    Google Scholar 

  9. 9.

    Shrestha, S., & Choi, D. (2017). Rain attenuation statistics over millimeter wave bands in South Korea. Journal of Atmospheric and Solar-Terrestrial Physics, 152–153, 1–10.

    Google Scholar 

  10. 10.

    Ojo, J. S. (2017). Geo-spatial distribution of cloud cover and influence of cloud induced attenuation and noise temperature on satellite signal propagation over Nigeria. Advances in Space Research, 59(10), 2611–2622.

    Article  Google Scholar 

  11. 11.

    Adegbidin, P. A. O., & Odhiambo, M. O. (2016). Intelligent weather awareness technique for mitigating propagation impairment at SHF and EHF satellite network system in a tropical climate. Research Journal of the South African Institute of Electrical Engineers, 107(3), 136–145.

    Google Scholar 

  12. 12.

    Durodola, O. M., Ojo, J. S., & Ajewole, M. O. (2017). Performance of Ku-band satellite signals received during rainy condition in two low latitude tropical locations of Nigeria. Adamawa State University Journal of Scientific Research, 1(5), 1–17.

    Google Scholar 

  13. 13.

    ITU-Rec. P 618-12. (2012). Propagation data and prediction method required for the design of earth-space telecommunication systems. Radio wave propagation. International Telecommunication Union Recommendation ITU-R P.6I8-12.

  14. 14.

    Rahman, A., Qureshi, I. M., & Malik, A. N. (2012). A fuzzy rule base assisted adaptive coding and modulation scheme for OFDM systems. Journal of Basic and Applied Scientific Research, 2(5), 4843–4853.

    Google Scholar 

  15. 15.

    Rahman, A., Qureshi, I. M., & Muzaffar, M. Z. (2011). Adaptive coding and modulation for OFDM systems using product codes and fuzzy rule base system. International Journal of Computer Applications (IJCA), 35(4), 41–48.

    Google Scholar 

  16. 16.

    Rahman, A., Qureshi, I. M., & Malik, A. N. (2012). Adaptive resource allocation in OFDM systems using GA and fuzzy rule base system. World Applied Sciences Journal, 18(6), 836–844.

    Google Scholar 

  17. 17.

    Rahman, A., Qureshi, I. M., Malik, A. N., & Naseem, M. T. (2014). Dynamic resource allocation for OFDM systems using differential evolution and fuzzy rule base system. Journal of Intelligent & Fuzzy Systems (JIFS), 26(4), 2035–2046.

    Article  Google Scholar 

  18. 18.

    Rahman, A., Qureshi, I. M., Malik, A. N., & Naseem, M. T. (2014). A real time adaptive resource allocation scheme for OFDM systems using GRBF-neural networks and fuzzy rule base system. International Arab Journal of Information Technology (IAJIT), 11(6), 593–601.

    Google Scholar 

  19. 19.

    Gai, S., Yang, G., & Zhang, S. (2013). Multiscale texture classification using reduced quaternion wavelet transform. International Journal of Electronics and Communications, 67(3), 233–241.

    Article  Google Scholar 

  20. 20.

    Gai, S., Yang, G., Wan, M., & Wang, L. (2013). Denoising color images by reduced quaternion matrix singular value decomposition. Multidimensional Systems and Signal Processing, 26(1), 307–320.

    Article  Google Scholar 

  21. 21.

    Rahman, A., Qureshi, I. M., Malik, A. N., & Naseem, M. T. (2016). QoS and rate enhancement in DVB-S2 using fuzzy rule base system. Journal of Intelligent & Fuzzy Systems (JIFS), 30(1), 801–810.

    Article  Google Scholar 

  22. 22.

    ETSI EN 301 790. (2003). Digital video broadcasting (DVB); interaction channel for satellite distribution systems. ETSI European Standard, v. 1.3.1.

  23. 23.

    CCSDS 131.3-B-1. (2013). CCSDS space link protocols over ETSI DVB-S2 standard. The consultative Committee for Space Data Systems.

  24. 24.

    Rahman, A., Qureshi, I. M., Muzaffar, M. Z., & Naseem, M. T. (2012). Adaptive resource allocation for OFDM systems using fuzzy rule base system water-filling principle and product codes. In 12th International conference on intelligent systems design and applications (ISDA’12) (pp. 811–816). Brunei Darussalam.

  25. 25.

    Rahman, A., & Qureshi, I. M. Effectiveness of modified iterative decoding algorithm for cubic product codes. In International conference on hybrid intelligent systems (HIS’14) (pp. 260–265). Kuwait.

  26. 26.

    Rahman, A., Qureshi, I. M., & Naseem, M. T. (2013). Performance of modified iterative decoding algorithm for multilevel codes in adaptive OFDM system. International Journal of Computer Information Systems and Industrial Management Applications (IJCISIMA), 6, 1–10.

    Google Scholar 

  27. 27.

    Robert, G. G. (1963). Low density parity check codes. Monograph. Cambridge: MIT Press.

    Google Scholar 

  28. 28.

    Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heurisitic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359.

    Article  Google Scholar 

  29. 29.

    Report ITU-R BT.2302-0. (2014). Spectrum requirements for terrestrial television broadcasting in the UHF frequency band in Region 1 and the Islamic Republic of Iran.

  30. 30.

    Rahman, A. (2017). Applications of softcomputing in adaptive communication. International Journal Control Theory and Applications, 10(18), 81–93.

    Google Scholar 

  31. 31.

    Rahman, A. (2019). Memetic computing based numerical solution to Troesch problem. Journal of Intelligent and Fuzzy Systems, 36(6), 1–10.

    Google Scholar 

  32. 32.

    Chagas, G. O., Lorena, L. A. N., & dos Santos, R. D. C. (2019). A hybrid heuristic for the overlapping cluster editing problem. Applied Soft Computing, 81, 105482.

    Article  Google Scholar 

  33. 33.

    Taramasco, C., Olivares, R., Munoz, R., Soto, R., Villar, M., & de Albuquerque, V. H. C. (2019). The patient bed assignment problem solved by autonomous bat algorithm. Applied Soft Computing, 81, 105484.

    Article  Google Scholar 

  34. 34.

    Paithankar, A., & Chatterjee, S. (2019). Open pit mine production schedule optimization using a hybrid of maximum-flow and genetic algorithms. Applied Soft Computing, 81, 105507.

    Article  Google Scholar 

  35. 35.

    Rahman, A., Dash, S., Luhach, A. K., et al. (2019). A neuro-fuzzy approach for user behaviour classification and prediction. Journal of Cloud Computing, 8, 17. https://doi.org/10.1186/s13677-019-0144-9.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sujata Dash.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahman, Au., Dash, S. & Luhach, A.K. Dynamic MODCOD and power allocation in DVB-S2: a hybrid intelligent approach. Telecommun Syst 76, 49–61 (2021). https://doi.org/10.1007/s11235-020-00700-x

Download citation

Keywords

  • MODCOD
  • DVB-S2
  • DE
  • FRBS
  • ACM
  • Adaptive power
  • QoS