TV white spaces exploration for cognitive radio: taxonomy and research issues


In order to implement the interweave cognitive radio solutions, the research for finding sparsely utilized spectrum bands has revealed the VHF and UHF television broadcast bands, known as television white spaces (TVWS) as the foremost candidate. The TVWS quantification and throughput analysis conducted via several measurement attempts and field trials uncover various facets of the TVWS spectrum measurement. Consequently, the conclusions obtained may be processed to get a statistical knowledge about spectrum availability in a particular geographic region and hence utilized for spectrum management. This paper explores inherent methodologies used for TVWS assessment and provides a comprehensive overview of the TVWS regulatory norms, results obtained by TVWS measurement campaigns and field trials conducted worldwide. In addition, research issues, implementation challenges and future directions for TVWS measurement procedure are highlighted.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    El-Hajjar, M., & Hanzo, L. (2013). A survey of digital television broadcast transmission techniques. IEEE Communications Surveys and Tutorials, 15(4), 1924–1949.

    Article  Google Scholar 

  2. 2.

    Karimi, H.R., Fenton, M., Lapierre, G., & Fournier, E. (2010). European harmonized technical conditions and band plans for broadband wireless access in the 790–862 MHz digital dividend spectrum. In DySPAN, IEEE (pp. 1–9).

  3. 3.

    (2017) Recommendations on Issues related to Digital Terrestrial Broadcasting in India. Technical report: Telecom Regulatory Authority of India (TRAI).

  4. 4.

    Efremov, O. (1977). Measured VHF and UHF signal strength and spectrum occupancy versus antenna height. IEEE Transactions on Electromagnetic Compatibility, EMC–19(3), 284–291.

    Article  Google Scholar 

  5. 5.

    Schiphorst, R., & Slump, C.H. (2010). Evaluation of spectrum occupancy in Amsterdam using mobile monitoring vehicles. In VTC, IEEE (pp. 1–5).

  6. 6.

    Lysko, A. A., Masonta, M. T., Johnson, D. L., & Venter, H. (2012). FSL based estimation of white space availability in UHF TV bands in Bergvliet, South Africa. In SATNAC (pp. 1–5).

  7. 7.

    Barbiroli, M., Carciofi, C., Guiducci, D., & Petrini, V. (2012). White spaces potentially available in Italian scenarios based on the geo-location database approach. In DySPAN, IEEE, IEEE (pp. 416–421).

  8. 8.

    Adediran, Y. A., Kolade, O., Faruk, N., Surajudeen-Bakinde, N. T., Ayeni, A. A., & Bello, O. W. (2014). TV white space in Nigeria in UHF band: Geo-spatial approach. In ICAST, IEEE, IEEE (pp. 1–6).

  9. 9.

    Palka, P. (2014). Analysis of TV white spaces in dynamic broadcast taking into account adjacent channel interference. In ICCE, IEEE (pp. 31–32).

  10. 10.

    Shimomura, T., Oyama, T., & Seki, H. (2014). Analysis of TV white space availability in Japan. IEICE Transactions on Communications, E97.B(2), 350–358.

    Article  Google Scholar 

  11. 11.

    van de Beek, J., Riihijarvi, J., Achtzehn, A., & Mahonen, P. (2012). TV white space in Europe. IEEE Transactions on Mobile Computer, 11(2), 178–188.

    Article  Google Scholar 

  12. 12.

    Naik, G., Singhal, S., Kumar, A., & Karandikar, A. (2014). Quantitative assessment of TV white space in India. In NCC, IEEE (pp. 1–6).

  13. 13.

    Nekovee, M. (2009). Quantifying the availability of TV white spaces for cognitive radio operation in the UK. In ICC Wkshps, IEEE (pp. 1–5).

  14. 14.

    Kim, H., Yoon, H., & Sunahara, H. (2011). Study on a strategy for spectrum efficiency enhancement of DTV white space in Korea. In IWCMC, IEEE (pp. 1992–1996).

  15. 15.

    Ellingsaeter, B., Bezabih, H., Noll, J., & Maseng, T. (2012). Using TV receiver information to increase cognitive white space spectrum. In DySPAN, IEEE (pp. 131–141).

  16. 16.

    Jantti, R., Kerttula, J., Koufos, K., & Ruttik, K. (2011). Aggregate interference with FCC and ECC white space usage rules: Case study in Finland. In DySPAN, IEEE (pp. 599–602).

  17. 17.

    Oyama, T., Shimomura, T., & Seki, H. (2012). TV white space availability in Japan estimated using D/U-based and I/N-based protection rules. In GLOBECOM, IEEE (pp. 1302–1307).

  18. 18.

    Fadda, M., Murroni, M., & Popescu, V. (2016). Interference issues for VANET communications in the TVWS in urban environments. IEEE Transactions on Vehicular Technology, 65(7), 4952–4958.

    Article  Google Scholar 

  19. 19.

    Gorrepati, R., Eturu, A., Chaudhari, S., & Oksanen, J. (2017). Improved estimation of TV white spaces in India using terrain data. In NCC, IEEE (pp. 1–6).

  20. 20.

    Alonso, R. M., Plets, D., Deruyck, M., Martens, L., Joseph, W., & Nieto, G. G. (2017). Coverage, capacity and energy efficiency of TV white space technology. In BMSB, IEEE.

  21. 21.

    Rahim, R. A., Nordin, R., & Ismail, M. (2014). Investigation of channel bonding based on TV white space spectrum occupancy for urban areas in Malaysia. In ICoICT, IEEE (pp. 100–105).

  22. 22.

    Yin, L., Wu, K., Yin, S., Li, J., Li, S., & Ni, L.M. (2012). Digital dividend capacity in china: A developing country’s case study. In DySPAN, IEEE (pp. 121–130).

  23. 23.

    Dzulkifli, M. R., Kamarudin, M. R., & Abdul Rahman, T. (2011). Spectrum occupancy at UHF TV band for cognitive radio applications. In RFM, IEEE (pp. 111–114).

  24. 24.

    Harrold, T., Cepeda, R., & Beach, M. (2011). Long-term measurements of spectrum occupancy characteristics. In DySPAN, IEEE (pp. 83–89).

  25. 25.

    Wellens, M., & Mähönen, P. (2009). Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model. Mobile Networks and Applications, 15(3), 461–474.

    Article  Google Scholar 

  26. 26.

    Wellens, M., Wu, J., & Mahonen, P. (2007). Evaluation of spectrum occupancy in indoor and outdoor scenario in the context of cognitive radio. In CROWNCOM, IEEE (pp. 420–427).

  27. 27.

    Contreras, S., Villardi, G., Funada, R., & Harada, H. (2011). An investigation into the spectrum occupancy in japan in the context of TV white space systems. In CROWNCOM, IEEE (pp. 341–345).

  28. 28.

    Erpek, T., Lofquist, M., & Patton, K. (2007). Spectrum Occupancy Measurements Loring Commerce Centre Limestone, Maine, USA, September 18–20, 2007. Technical Report. The Shared Spectrum Company.

  29. 29.

    McHenry, M. A., & Steadman, K. (2005a). Spectrum Occupancy Measurements: National Radio Astronomy Observatory (NRAO) Green Bank, West Virginia, USA, Collected on October 10-11, 2004. Technical Report. The Shared Spectrum Company.

  30. 30.

    McHenry, M. A., & Steadman, K. (2005b). Spectrum Occupancy Measurements: Riverbend Park, Great Falls, Virginia, USA, Collected on April 7, 2004. Technical Report. The Shared Spectrum Company.

  31. 31.

    McHenry, M. A., & Steadman, K. (2005c). Spectrum occupancy measurements: Tyson’s Square Center, Vienna, Virginia, USA, Collected on April 9, 2004. Technical Report. The Shared Spectrum Company.

  32. 32.

    McHenry, M. A., & Chunduri, S. (2005). Spectrum occupancy measurements: National Science Foundation Building Roof, USA, Collected On April 16, 2004. Technical Report. The Shared Spectrum Company.

  33. 33.

    McHenry, M. A., McCloskey, D., & Lane-Roberts, G. (2005a). Spectrum Occupancy Measurements: Republican National Convention, New York City, New York, USA, Collected On Aug. 30–Sept. 3, 2004. Technical Report. The Shared Spectrum Company.

  34. 34.

    McHenry, M. A., McCloskey, D., Roberson, D., & MacDonald, J. T. (2005b). Spectrum Occupancy Measurements: Chicago, Illinois, USA, Collected on November 16–18, 2005. Technical Report. The Shared Spectrum Company.

  35. 35.

    Bacchus, R. B., Fertner, A. J., Hood, C. S., & Roberson, D. A. (2008). Long-term, wide-band spectral monitoring in support of dynamic spectrum access networks at the IIT spectrum observatory. In DySPAN, IEEE (pp. 1–10).

  36. 36.

    Taher, T. M., Bacchus, R. B., Zdunek, K. J., & Roberson, D. A. (2011). Long-term spectral occupancy findings in Chicago. In DySPAN, IEEE (pp. 100–107).

  37. 37.

    Noorts, G., Engel, J., Taylor, J., Roberson, D., Bacchus, R., Taher, T., & Zdunek, K. (2012). An RF spectrum observatory database based on a hybrid storage system. In DySPAN, IEEE (pp. 114–120).

  38. 38.

    Erpek, T., Steadman, K., & Jones, D. (2007). Spectrum occupancy measurements: Dublin, Ireland, Collected On April 16–18, 2007. Technical Report. The Shared Spectrum Company.

  39. 39.

    Vieira de Lima, M., & da Silva Mello, L. (2013). Cognitive radio simulation based on spectrum occupancy measurements at one site in Brazil. In MTT-S IMOC, IEEE. (pp. 1–5).

  40. 40.

    Babalola, O., Garba, E., Oladimeji, I., Bamiduro, A., Faruk, N., Sowande, O., Bello, O., Ayeni, A., & Muhammad, M. (2015) Spectrum occupancy measurements in the TV and CDMA bands. In CYBER-Abuja, IEEE (pp. 192–196).

  41. 41.

    Mehdawi, M., Riley, N. G., Ammar, M., Fanan, A., & Zolfaghari, M. (2015). Spectrum occupancy measurements and lessons learned in the context of cognitive radio. In TELFOR, IEEE (pp. 196–199).

  42. 42.

    Islam, M. H., Koh, C. L., Oh, S. W., Qing, X., Lai, Y. Y., Wang, C., Liang, Y.-C., Toh, B. E., Chin, F., Tan, G. L., & Toh, W. (2008). Spectrum survey in Singapore: Occupancy measurements and analyses. In CROWNCOM, IEEE (pp. 1–7).

  43. 43.

    Lopez-Benitez, M., Umbert, A., & Casadevall, F. (2009). Evaluation of spectrum occupancy in Spain for cognitive radio applications. In VTC Spring, IEEE (pp. 1–5).

  44. 44.

    López-Benítez, M., & Casadevall, F. (2010). Methodological aspects of spectrum occupancy evaluation in the context of cognitive radio. European Transactions on Telecommunications, 21(8), 680–693.

    Article  Google Scholar 

  45. 45.

    Lopez-Benitez, M., & Casadevall F. (2010). On the spectrum occupancy perception of cognitive radio terminals in realistic scenarios. In ICIP, IEEE (pp. 99–104).

  46. 46.

    Vo, N. Q. B., Le, Q. C., Le, Q. P., Tran, D. T., Nguyen, T. Q., & Lam, M. T. (2011). Vietnam spectrum occupancy measurements and analysis for cognitive radio applications. In ATC, IEEE (pp. 135–143).

  47. 47.

    Jaber, A. H., Aripin, N. M., & Salaim, N. (2013). Evaluation of spectrum occupancy in kuala lumpur of UHF TV band for cognitive radio applications. In SCoRED, IEEE (pp. 491–494).

  48. 48.

    Zennaro, M., Pietrosemoli, E., Mlatho, J., Thodi, M., & Mikeka, C. (2013). An assessment study on white spaces in Malawi using affordable tools. In GHTC, IEEE (pp. 265–269).

  49. 49.

    Palash, M. R., Ahmed, Z., Khalil, M. I., & Akter, L. (2015). 0–3 GHz spectrum occupancy measurement in Bangladesh for cognitive radio purpose. In ICTP, IEEE (pp. 1–4).

  50. 50.

    Pedraza, L. F., Molina, A., & Paez, I. (2013). Spectrum occupancy statistics in Bogota–Colombia. In COLCOM, IEEE (pp. 1–6).

  51. 51.

    Kliks, A., Kryszkiewicz, P., Pérez-Romero, J., Umbert, A., & Casadevall, F. (2013). Spectrum occupancy in big cities-comparative study-measurement campaigns in Barcelona and Poznan. In ISWCS, VDE (pp. 1–5).

  52. 52.

    Martian, A., Marcu, I., & Marghescu, I. (2010). Spectrum occupancy in an urban environment: A cognitive radio approach. In AICT, IEEE (pp. 25–29).

  53. 53.

    Rogers, A., Salah, J., Smythe, D., Pratap, P., Carter, J., & Derome, M. (2005). Interference temperature measurements from 70 to 1500 MHz in suburban and rural environments of the northeast. In DySPAN, IEEE (pp. 119–123).

  54. 54.

    Al-Hourani, A., Trajkovic, V., Chandrasekharan, S., & Kandeepan, S. (2015). Spectrum occupancy measurements for different urban environments. In EuCNC, IEEE (pp. 97–102).

  55. 55.

    Kagarura, G. M., Okello, D. K., & Akol, R. N. (2013). Evaluation of spectrum occupancy: A case for cognitive radio in Uganda. In MSN, IEEE (pp. 167–174).

  56. 56.

    Kumar, P., Rakheja, N., Sarswat, A., Varshney, H., Bhatia, P., Goli, S. R., Ribeiro, V. J., & Sharma, M. (2013). White space detection and spectrum characterization in urban and rural India. In WoWMoM, IEEE (pp. 1–6).

  57. 57.

    Aguilar-Gonzalez, R., Cardenas-Juarez, M., Pineda-Rico, U., & Stevens-Navarro, E. (2013). Spectrum occupancy measurements below 1 GHz in the city of San Luis Potosi, Mexico. In VTC Fall, IEEE (pp. 1–5).

  58. 58.

    Angueira, P., Fadda, M., Morgade, J., Murroni, M., & Popescu, V. (2015). Field measurements for practical unlicensed communication in the UHF band. Telecommunication System, 61(3), 443–449.

    Article  Google Scholar 

  59. 59.

    Fadda, M., Popescu, V., Murroni, M., Angueira, P., & Morgade, J. (2015). On the feasibility of unlicensed communications in the TV white space: Field measurements in the UHF band. International Journal of Digital Multimedia Broadcasting, 2015, 1–9.

    Article  Google Scholar 

  60. 60.

    Aragon-Zavala, A., Brown, T. W. C., & Castanon, G. (2016). Polarization and effects on hidden node/shadowing margin for TVWS. IEEE Transactions on Broadcasting, 62(1), 46–54.

    Article  Google Scholar 

  61. 61.

    Arcia-Moret, A., Pietrosemoli, E., & Zennaro, M. (2013). WhispPi: White space monitoring with raspberry pi. In GIIS, IEEE (pp. 1–6).

  62. 62.

    Lazaridis, P. I., Kasampalis, S., Zaharis, Z. D., Cosmas, J., Bizopoulos, A., Latkoski, P., Gavrilovska, L., Fratu, O., & Prasad, R. (2014). UHF TV band spectrum and field-strength measurements before and after analogue switch-off. In VITAE, IEEE (pp. 1–5).

  63. 63.

    Hadzialic, M., Musovic, J., Hamza, M., Milisic, M., Huseinovic, K., Dizdarevic, J., & Dulic, M. (2014). TV white space: Solution for bridging the gap between user’s demand and the network capacities. In TELFOR, IEEE (pp. 55–58).

  64. 64.

    Ellingson, S. (2005). Spectral occupancy at VHF: Implications for frequency-agile cognitive radios. VTC Fall, IEEE, 2, 1379–1382.

    Article  Google Scholar 

  65. 65.

    Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suarez, M., & Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analyses and observations. In ICST CROWNCOM, IEEE (pp. 1–5).

  66. 66.

    Bedogni, L., Di Felice, M., Malabocchia, F., & Bononi, L. (2014). Indoor communication over TV gray spaces based on spectrum measurements. In WCNC, IEEE (pp. 3218–3223).

  67. 67.

    Dumont, N., Watson, R. J., & Pennock, S. R. (2012). Propagation modelling for white space geo-location databases. In EUCAP, IEEE (pp. 2175–2179).

  68. 68.

    Kurnaz, C., Engiz, B. K., & Albayrak, Z. E. (2016). Determination of TV white space spectrum availability in samsun turkey. In TELFOR, IEEE (pp. 1–4).

  69. 69.

    Abdullah, N. F., Goulianos, A., Kong, D., Mellios, E., Berkovskyy, D., Doufexi, A., & Nix, A. (2014). Infrastructure-to-vehicle throughput in TVWS for urban and rural environments. In WiVeC, IEEE (pp. 1–5).

  70. 70.

    Holland, O., Sastry, N., Ping, S., Knopp, R., Kaltenberger, F., Nussbaum, D., et al. (2014). A series of trials in the UK as part of the ofcom TV white spaces pilot. In CCS, IEEE (pp. 1–5).

  71. 71.

    Holland, O., Ping, S., Sastry, N., Chawdhry, P., Chareau, J.-M., Bishop, J., et al. (2015). Some initial results and observations from a series of trials within the ofcom TV white spaces pilot. In VTC Spring, IEEE (pp. 1–7).

  72. 72.

    Masonta, M., Kola, L., Lysko, A., Pieterse, L., & Velempini, M. (2015). Network performance analysis of the Limpopo TV white space (TVWS) trial network. In AFRICON, IEEE (pp. 1–5).

  73. 73.

    Lysko, A. A., Masonta, M. T., Mofolo, M. R., Mfupe, L., Montsi, L., Johnson, D. L., et al. (2014). First large TV white spaces trial in south africa: A brief overview. In ICUMT, IEEE (pp. 407–414).

  74. 74.

    Tran, M.T., Dang, T.P.T., & Hoang, V.H. (2014). A study on television white space technology and its applicability in Vietnam. In ATC, IEEE (pp. 482–486).

  75. 75.

    Fadda, M., Murroni, M., & Popescu, V. (2012). An unlicensed indoor HDTV multi-vision system in the DTT bands. IEEE Transactions on Broadcasting, 58(3), 338–346.

    Article  Google Scholar 

  76. 76.

    Almantheri, H. M., Al Amri, K., Al Bahri, Y., & Al Rahbi, G. (2018). TV white space (TVWS) trial in Oman: Phase one (Technical). In DINWC, IEEE (pp. 1–6).

  77. 77.

    Kang, K.-M., & Jeong, B. J. (2014). TV band device for TV white space field trial. In ICCE, IEEE (pp. 450–451).

  78. 78.

    Ferreira, A., Mendes, L., Dias, W., Marins, T., Gaspar, D., Matos, A., et al. (2019). 5g-RANGE project field trial. In EuCNC, IEEE.

  79. 79.

    Dore, J.-B., Ktenas, D., Popon, X., Dassonville, D., & Rosson, P. (2018). TVWS field trials with BF-OFDM. In EuCNC, IEEE.

  80. 80.

    Mishra, M., & Sahai, A. (2009). How much white space is there? Technical Report: UCB/EECS-2009-3, EECS Department, University of California, Berkeley, CA, USA.

  81. 81.

    IEEE Standards Association. (2011). IEEE Standard for Wireless RAN - Part 22: Cognitive Wireless RAN MAC and PHY specifications - Policies and procedures for operation in the TV Bands. Standard: IEEE Std 802.22-2011, IEEE.

  82. 82.

    Electronic Communications Committee. (2011). Technical and operational requirements for the possible operation of cognitive radio systems in the ’white spaces’ of the frequency band 470-790 MHz. Technical Report: ECC Report 159, European Conference of Postal and Telecommunications Administrations (CEPT).

  83. 83.

    Murty, R., Chandra, R., Moscibroda, T., & Bahl, P. (2012). SenseLess: A database-driven white spaces network. IEEE Transactions on Mobile Computing, 11(2), 189–203.

    Article  Google Scholar 

  84. 84.

    Kasampalis, S., Lazaridis, P. I., Zaharis, Z. D., Bizopoulos, A., Zettas, S., & Cosmas, J. (2014). Comparison of Longley-Rice, ITU-R P. 1546 and Hata-Davidson propagation models for DVB-T coverage prediction. In BMSB, IEEE (pp. 1–4).

  85. 85.

    (2019) Population density (people per sq. km of land area): Food and Agriculture Organization and World Bank population estimates. Technical Report, The World Bank.

  86. 86.

    (2016) The Base of Spectrum Analyzers. Technical Note: SpectrumAnalyzer-E-E-1-(4.00), Anritsu.

  87. 87.

    Agilent (2004) Agilent: spectrum analysis basics. Application Note.

  88. 88.

    Kassem, M. M., Marina, M. K., & Holland, O. (2018). On the potential of TVWS spectrum to enable a low cost middle mile network infrastructure. In COMSNETS, IEEE (pp. 159–166).

  89. 89.

    (2016) Worldwide Commercial Deployments, Pilots, and Trials. Technical Report, Dynamic Spectrum Alliance Limited.

  90. 90.

    Villardi, G. P., Harada, H., Kojima, F., & Yano, H. (2016). Primary contour prediction based on detailed topographic data and its impact on TV white space availability. IEEE Transactions on Antennas and Propagation, 64(8), 3619–3631.

    Article  Google Scholar 

  91. 91.

    Makris, D., Gardikis, G., & Kourtis, A. (2012). Quantifying TV white space capacity: A geolocation-based approach. IEEE Communications Magazine, 50(9), 145–152.

    Article  Google Scholar 

  92. 92.

    Fanan, A. M., Riley, N., Mehdawi, M., & Ammar, M. (2016). Comparison of propagation models with real measurement around hull, UK. In TELFOR, IEEE (pp. 1–4).

  93. 93.

    Liebl, D. (2013). Measuring with Modern Spectrum Analyzers. Educational Note: 1MA201\_09e, Rohde & Schwarz.

  94. 94.

    Singh, A., Salwe, S. S., Naik, K. K., & Kumar, C. R. S. (2018). OFDM-based TVWS-IEEE standards: A survey of PHY and cognitive radio features. Wireless Personal Communications, 103(2), 1725–1764.

    Article  Google Scholar 

  95. 95.

    Singh, A., Naik, K. K., & Kumar, C. R. S. (2016). UHF TVWS operation in Indian scenario utilizing wireless regional area network for rural broadband access. In ICNGIS, IEEE (pp. 1–6).

  96. 96.

    Harrison, K., Mishra, S. M., & Sahai, A. (2010). How much white-space capacity is there? In DySPAN, IEEE (pp. 1–10).

  97. 97.

    Brown, T. X., & Sicker, D. C. (2007). Can cognitive radio support broadband wireless access? In DySPAN, IEEE (pp. 123–132).

  98. 98.

    (2019) Amendment of Part 15 Rules for Unlicensed White Spaces Devices. Technical Report: FCC-19-24A1, Federal Communications Commission,

  99. 99.

    Hashir, S.M., Erkucuk, S., & Baykas, T. (2018). A novel indoor channel model for TVWS communications based on measurements. In CSCN, IEEE.

  100. 100.

    Farhang-Boroujeny, B., & Moradi, H. (2016). OFDM inspired waveforms for 5g. IEEE Communications Surveys and Tutorials, 18(4), 2474–2492.

    Article  Google Scholar 

  101. 101.

    Wang, Y., Ren, B., Sun, S., Kang, S., & Yue, X. (2016). Analysis of non-orthogonal multiple access for 5g. China Communication, 13(2), 52–66.

    Article  Google Scholar 

  102. 102.

    Li, C., Liu, P., Zou, C., Sun, F., Cioffi, J. M., & Yang, L. (2016). Spectral-efficient cellular communications with coexistent one- and two-hop transmissions. IEEE Transactions on Vehicular Technology, 65(8), 6765–6772.

    Article  Google Scholar 

  103. 103.

    Ji, B., Chen, Z., Chen, S., Zhou, B., Li, C., & Wen, H. (2020). Joint optimization for ambient backscatter communication system with energy harvesting for IoT. Mechanical Systems and Signal Processing, 135, 106412.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ajit Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Naik, K.K. & Kumar, C.R.S. TV white spaces exploration for cognitive radio: taxonomy and research issues. Telecommun Syst (2020).

Download citation


  • Average spectrum duty cycle
  • Cognitive radio
  • Digital switchover
  • Path loss model
  • Spectrum occupancy measurement
  • TV white spaces
  • Ultra high frequency
  • Very high frequency