Telecommunication Systems

, Volume 69, Issue 1, pp 141–165 | Cite as

A survey of hybrid MAC protocols for machine-to-machine communications

  • Oluwatosin Ahmed Amodu
  • Mohamed Othman


Machine-to-machine (M2M) communications are envisaged to present several interesting applications in the coming years. However, they have major setbacks hurdling their massive deployment. A major challenge is ensuring the network and wireless medium robustly accommodate the millions of devices which will be part of this communication paradigm while gracefully accommodating their diverse quality of service requirements. In this regard, medium access control schemes play a vital role. Traditional contention-based protocols are constrained in their performance under high loads while scheduling-based schemes may be faced with limited scalability and poor delay guarantees. Similarly, tree-based contention resolution schemes have some finite delay associated with them. Recently, hybrids of the aforementioned schemes have been studied in literature to solve the problems associated with traditional medium access schemes. This paper surveys the state-of-the-art hybrid schemes for M2M presenting a classification of recent protocols. Furthermore, we give a summary of major areas of interest such as problem solved, approach used and trade-offs. Salient differences in the protocols are identified with insights into opportunities for improvement. Our findings reveal general design guidelines and interesting future directions.


M2M Access protocols Hybrid MAC schemes Clustering Energy harvesting TDMA CSMA Distributed queuing Energy efficiency QoS Open issues 



We would like to appreciate everyone who provided valuable suggestions and support to improve the content, quality and presentation of this paper. This work has been supported by the Malaysian Ministry of Higher Education under the Malaysian International Scholarship scheme. The support of the Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (through MyRA grant) for obtaining the required copyright permissions for use in this paper is also highly appreciated.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Verma, P. K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., et al. (2016). Machine-to-machine (M2M) communications: A survey. Journal of Network and Computer Applications, 66, 83–105.CrossRefGoogle Scholar
  2. 2.
    Taleb, T., & Kunz, A. (2012). Machine type communications in 3GPP networks: Potential, challenges, and solutions. IEEE Communications Magazine, 50(3), 178–184.CrossRefGoogle Scholar
  3. 3.
    Hasan, M., Hossain, E., & Niyato, D. (2013). Random access for machine-to-machine communication in LTE-advanced networks: Issues and approaches. IEEE Communications Magazine, 51(6), 86–93.CrossRefGoogle Scholar
  4. 4.
    Barki, A., Bouabdallah, A., Gharout, S., & Traor, J. (2016). M2M security: Challenges and solutions. IEEE Communications Surveys Tutorials, 18(2), 1241–1254.CrossRefGoogle Scholar
  5. 5.
    Ghavimi, F., & Chen, H. H. (2015). M2M communications in 3GPP LTE/LTE-A networks: Architectures, service requirements, challenges, and applications. IEEE Communications Surveys Tutorials, 17(2), 525–549.CrossRefGoogle Scholar
  6. 6.
    Shariatmadari, H., Ratasuk, R., Iraji, S., Laya, A., Taleb, T., Jntti, R., et al. (2015). Machine-type communications: Current status and future perspectives toward 5G systems. IEEE Communications Magazine, 53(9), 10–17.CrossRefGoogle Scholar
  7. 7.
    Mehmood, Y., Görg, C., Muehleisen, M., & Timm-Giel, A. (2015). Mobile M2M communication architectures, upcoming challenges, applications, and future directions. EURASIP Journal on Wireless Communications and Networking, 2015(1), 250.CrossRefGoogle Scholar
  8. 8.
    Zheng, K., Hu, F., Wang, W., Xiang, W., & Dohler, M. (2012). Radio resource allocation in LTE-advanced cellular networks with M2M communications. IEEE Communications Magazine, 50(7), 184–192.CrossRefGoogle Scholar
  9. 9.
    Laya, A., Alonso, L., & Alonso-Zarate, J. (2014). Is the random access channel of LTE and LTE-A suitable for M2M communications? A survey of alternatives. IEEE Communications Surveys Tutorials, 16(1), 4–16.CrossRefGoogle Scholar
  10. 10.
    Rajandekar, A., & Sikdar, B. (2015). A survey of MAC layer issues and protocols for machine-to-machine communications. IEEE Internet of Things Journal, 2(2), 175–186.CrossRefGoogle Scholar
  11. 11.
    Pereira, C., & Aguiar, A. (2014). Towards efficient mobile M2M communications: Survey and open challenges. Sensors, 14(10), 19582.CrossRefGoogle Scholar
  12. 12.
    Soltanmohammadi, E., Ghavami, K., & Naraghi-Pour, M. (2016). A survey of traffic issues in machine-to-machine communications over LTE. IEEE Internet of Things Journal, 3(6), 865–884.CrossRefGoogle Scholar
  13. 13.
    Tekbiyik, N., & Uysal-Biyikoglu, E. (2011). Energy efficient wireless unicast routing alternatives for machine-to-machine networks. Journal of Network and Computer Applications, 34(5), 1587–1614.CrossRefGoogle Scholar
  14. 14.
    Laya, A., Kalalas, C., Vazquez-Gallego, F., Alonso, L., & Alonso-Zarate, J. (2016). Goodbye, aloha!. IEEE Access, 4, 2029–2044.CrossRefGoogle Scholar
  15. 15.
    Bachir, A., Dohler, M., Watteyne, T., & Leung, K. K. (2010). Mac essentials for wireless sensor networks. IEEE Communications Surveys Tutorials, 12(2), 222–248.CrossRefGoogle Scholar
  16. 16.
    Zhai, H., Wang, J., Chen, X., & Fang, Y. (2006). Medium access control in mobile ad hoc networks: Challenges and solutions. Wireless Communications and Mobile Computing, 6(2), 151–170.CrossRefGoogle Scholar
  17. 17.
    Natkaniec, M., Kosek-Szott, K., Szott, S., & Bianchi, G. (2013). A survey of medium access mechanisms for providing QoS in ad-hoc networks. IEEE Communications Surveys Tutorials, 15(2), 592–620.CrossRefGoogle Scholar
  18. 18.
    Jurdak, R., Lopes, C. V., & Baldi, P. (2004). A survey, classification and comparative analysis of medium access control protocols for ad hoc networks. IEEE Communications Surveys Tutorials, 6(1), 2–16.CrossRefGoogle Scholar
  19. 19.
    Tsao, S.-L., & Huang, C.-H. (2011). A survey of energy efficient MAC protocols for IEEE 802.11 WLAN. Computer Communications, 34(1), 54–67.CrossRefGoogle Scholar
  20. 20.
    Gursu, H. M., Vilgelm, M., Kellerer, W., & Reisslein, M. (2017). Hybrid collision avoidance-tree resolution for M2M random access. IEEE Transactions on Aerospace and Electronic Systems, 99, 1–1.Google Scholar
  21. 21.
    Xia, N., Chen, H. H., & Yang, C. S. (2017). Radio resource management in machine-to-machine communications—A survey. IEEE Communications Surveys Tutorials, PP(99), 1.Google Scholar
  22. 22.
    Shitiri, E., Park, I.-S., & Cho, H.-S. (2017). OrMAC: A hybrid MAC protocol using orthogonal codes for channel access in M2M networks. Sensors, 17(9), 2138.CrossRefGoogle Scholar
  23. 23.
    Shafiq, M. Z., Ji, L., Liu, A. X., Pang, J., & Wang, J. (2013). Large-scale measurement and characterization of cellular machine-to-machine traffic. IEEE/ACM Transactions on Networking, 21(6), 1960–1973.CrossRefGoogle Scholar
  24. 24.
    Hussain, F., Anpalagan, A., & Vannithamby, R. (2017). Medium access control techniques in M2M communication: Survey and critical review. Transactions on Emerging Telecommunications Technologies, 28, e2869.
  25. 25.
    Liu, Y., Yuen, C., Chen, J., & Cao, X. (2013). A scalable hybrid MAC protocol for massive M2M networks. In 2013 IEEE wireless communications and networking conference (WCNC) (pp. 250–255).Google Scholar
  26. 26.
    Liu, Y., Yuen, C., Cao, X., Hassan, N. U., & Chen, J. (2014). Design of a scalable hybrid MAC protocol for heterogeneous M2M networks. IEEE Internet of Things Journal, 1(1), 99–111.CrossRefGoogle Scholar
  27. 27.
    Liu, Y., Yang, Z., Yu, R., Xiang, Y., & Xie, S. (2015). An efficient MAC protocol with adaptive energy harvesting for machine-to-machine networks. IEEE Access, 3, 358–367.CrossRefGoogle Scholar
  28. 28.
    Ghazvini, F. K., Mehmet-Ali, M., & Doughan, M. (2017). Scalable hybrid MAC protocol for M2M communications. Computer Networks, 127, 151–160.CrossRefGoogle Scholar
  29. 29.
    Xu, C., Wang, C., Liu, L., & Li, N. (2015). HG-MAC: A energy-efficient protocol for M2M network. In International conference on information technology and management innovation (ICITMI 2015).Google Scholar
  30. 30.
    Verma, P. K., Verma, R., Prakash, A., Tripathi, R., & Naik, K. (2015). A novel scalable hybrid-MAC protocol for densely deployed M2M networks. In 2015 international conference on computational intelligence and communication networks (CICN) (pp. 50–55).Google Scholar
  31. 31.
    Verma, P. K., Verma, R., Prakash, A., Tripathi, R., & Naik, K. (2016). A novel hybrid medium access control protocol for inter-M2M communications. Journal of Network and Computer Applications, 75, 77–88.CrossRefGoogle Scholar
  32. 32.
    Hegazy, E., Saad, W., Shokair, M., & El halafawy, S. (2016). Proposed MAC protocol for M2M networks. International Journal of Computing and Digital Systems. 5(4), 357–363.
  33. 33.
    Hegazy, E., Saad, W., & Shokair, M. (2017). An efficient proposed MAC protocol for M2M networks. Wireless Personal Communications, 96(2), 2253–2269.
  34. 34.
    Sui, N., Wang, C., Xie, W., & Xu, Y. (2017). Hybrid S-ALOHA/TDMA protocol for LTE/LTE-A networks with coexistence of H2H and M2M traffic. KSII Transactions on Internet & Information Systems, 11(2), 687–708.Google Scholar
  35. 35.
    Park, I.-S., Shitiri, E., & Cho, H.-S. (2016). An orthogonal coded hybrid MAC protocol with received power based prioritization for M2M networks. In 2016 eighth international conference on ubiquitous and future networks (ICUFN) (pp. 733–735).Google Scholar
  36. 36.
    Azari, A., & Miao, G. (2014). Energy efficient MAC for cellular-based M2M communications. In 2014 IEEE global conference on signal and information processing (GlobalSIP) (pp. 128–132).Google Scholar
  37. 37.
    Miao, G., Azari, A., & Hwang, T. (2016). \(\text{ E }^{2}\)-MAC: Energy efficient medium access for massive M2M communications. IEEE Transactions on Communications, 64(11), 4720–4735.CrossRefGoogle Scholar
  38. 38.
    Vázquez-Gallego, F. V., Alonso-Zarate, J., Balboteo, I., & Alonso, L. (2013). DPCF-M: A medium access control protocol for dense machine-to-machine area networks with dynamic gateways. In 2013 IEEE 14th workshop on signal processing advances in wireless communications (SPAWC) (pp. 490–494).Google Scholar
  39. 39.
    Rhee, I., Warrier, A., Aia, M., Min, J., & Sichitiu, M. L. (2008). Z-MAC: A hybrid MAC for wireless sensor networks. IEEE/ACM Transactions on Networking (TON), 16(3), 511–524.CrossRefGoogle Scholar
  40. 40.
    Song, Q., Nuaymi, L., & Lagrange, X. (2016). Survey of radio resource management issues and proposals for energy-efficient cellular networks that will cover billions of machines. EURASIP Journal on Wireless Communications and Networking, 2016(1), 140.CrossRefGoogle Scholar
  41. 41.
    Ali, A., Shah, G. A., & Arshad, J. (2016). Energy efficient techniques for M2M communication: A survey. Journal of Network and Computer Applications, 68, 42–55.CrossRefGoogle Scholar
  42. 42.
    Islam, M., Taha, A., & Akl, S. (2014). A survey of access management techniques in machine type communications. IEEE Communications Magazine, 52(4), 74–81.CrossRefGoogle Scholar
  43. 43.
    Mokashi, A. A., & Patil, B. M. (2016). Hybrid medium access control scheme for large machine to machine networks: A review. In IJCA proceedings on international conference on advances in science and technology, ICAST (Vol. 2015, No. 2, pp. 13–15).Google Scholar
  44. 44.
    Verma, P. K., Tripathi, R., & Naik, K. (2014). A robust hybrid-MAC protocol for M2M communications. In 2014 international conference on computer and communication technology (ICCCT) (pp. 267–271).Google Scholar
  45. 45.
    Biral, A., Centenaro, M., Zanella, A., Vangelista, L., & Zorzi, M. (2015). The challenges of M2M massive access in wireless cellular networks. Digital Communications and Networks, 1(1), 1–19.CrossRefGoogle Scholar
  46. 46.
    Gummalla, A. C. V., & Limb, J. O. (2000). Wireless medium access control protocols. IEEE Communications Surveys Tutorials, 3(2), 2–15.CrossRefGoogle Scholar
  47. 47.
    Hadded, M., Muhlethaler, P., Laouiti, A., Zagrouba, R., & Saidane, L. A. (2015). TDMA-based MAC protocols for vehicular ad hoc networks: A survey, qualitative analysis, and open research issues. IEEE Communications Surveys Tutorials, 17(4), 2461–2492.CrossRefGoogle Scholar
  48. 48.
    Doudou, M., Djenouri, D., & Badache, N. (2013). Survey on latency issues of asynchronous MAC protocols in delay-sensitive wireless sensor networks. IEEE Communications Surveys Tutorials, 15(2), 528–550.CrossRefGoogle Scholar
  49. 49.
    Alonso, L., Vazquez-Gallego, F., & Alonso-Zarate, J. (2015). Energy analysis of contention tree-based access protocols in dense machine-to-machine area networks. Journal of Sensors, 2015(685164), 12.Google Scholar
  50. 50.
    Lin, H.-H., Shih, M.-J., Wei, H.-Y., & Vannithamby, R. (2015). DeepSleep: IEEE 802.11 enhancement for energy-harvesting machine-to-machine communications. Wireless Networks, 21(2), 357–370.CrossRefGoogle Scholar
  51. 51.
    Demirkol, I., Ersoy, C., & Alagoz, F. (2006). Mac protocols for wireless sensor networks: A survey. IEEE Communications Magazine, 44(4), 115–121.CrossRefGoogle Scholar
  52. 52.
    AlSkaif, T., Bellalta, B., Zapata, M. G., & Ordinas, J. M. B. (2016). Energy efficiency of MAC protocols in low data rate wireless multimedia sensor networks: A comparative study. Ad Hoc Networks, 56, 141–157.CrossRefGoogle Scholar
  53. 53.
    Arifuzzaman, M., Matsumoto, M., & Sato, T. (2013). An intelligent hybrid MAC with traffic-differentiation-based QoS for wireless sensor networks. IEEE Sensors Journal, 13(6), 2391–2399.CrossRefGoogle Scholar
  54. 54.
    Suriyachai, P., Roedig, U., & Scott, A. (2012). A survey of MAC protocols for mission-critical applications in wireless sensor networks. IEEE Communications Surveys Tutorials, 14(2), 240–264.CrossRefGoogle Scholar
  55. 55.
    Alfayez, F., Hammoudeh, M., & Abuarqoub, A. (2015). A survey on MAC protocols for duty-cycled wireless sensor networks. Procedia Computer Science, 73, 482–489.CrossRefGoogle Scholar
  56. 56.
    Yun, S. Y., Yi, Y., Shin, J., & Eun, D. Y. (2012). Optimal CSMA: A survey. In 2012 IEEE international conference on communication systems (ICCS) (pp. 199–204).Google Scholar
  57. 57.
    Sgora, A., Vergados, D. J., & Vergados, D. D. (2015). A survey of TDMA scheduling schemes in wireless multihop networks. ACM Computing Surveys (CSUR), 47(3), 53.CrossRefGoogle Scholar
  58. 58.
    Khan, J. Y., Chen, D., & Brown, J. (2016). A cooperative MAC protocol for a M2M heterogeneous area network. Journal of Sensor and Actuator Networks, 5(3), 12.CrossRefGoogle Scholar
  59. 59.
    Kosek-Szott, K. (2012). A survey of MAC layer solutions to the hidden node problem in ad-hoc networks. Ad Hoc Networks, 10(3), 635–660.CrossRefGoogle Scholar
  60. 60.
    Huang, P., Xiao, L., Soltani, S., Mutka, M. W., & Xi, N. (2013). The evolution of MAC protocols in wireless sensor networks: A survey. IEEE Communications Surveys Tutorials, 15(1), 101–120.CrossRefGoogle Scholar
  61. 61.
    Shirvanimoghaddam, M., Li, Y., Dohler, M., Vucetic, B., & Feng, S. (2015). Probabilistic rateless multiple access for machine-to-machine communication. IEEE Transactions on Wireless Communications, 14(12), 6815–6826.CrossRefGoogle Scholar
  62. 62.
    Shrestha, B., Hossain, E., & Choi, K. W. (2014). Distributed and centralized hybrid CSMA/CA-TDMA schemes for single-hop wireless networks. IEEE Transactions on Wireless Communications, 13(7), 4050–4065.CrossRefGoogle Scholar
  63. 63.
    Pawar, P., Nielsen, R., Prasad, N., Ohmori, S., & Prasad, R. (2011). Hybrid mechanisms: Towards an efficient wireless sensor network medium access control. In 2011 the 14th international symposium on wireless personal multimedia communications (WPMC) (pp. 1–5).Google Scholar
  64. 64.
    Verma, R., Prakash, A., Verma, P. K., Tyagi, N., & Tripathi, R. (2010). A novel MAC protocol for MANETs using smart antenna system. In 2010 international conference on power, control and embedded systems (pp. 1–6).Google Scholar
  65. 65.
    Duan, S., Shah-Mansouri, V., Wang, Z., & Wong, V. W. S. (2016). D-ACB: Adaptive congestion control algorithm for bursty M2M traffic in lte networks. IEEE Transactions on Vehicular Technology, 65(12), 9847–9861.CrossRefGoogle Scholar
  66. 66.
    Alonso-Zarate, J., Verikoukis, C., Kartsakli, E., Cateura, A., & Alonso, L. (2008). A near-optimum cross-layered distributed queuing protocol for wireless LAN. IEEE Wireless Communications, 15(1), 48–55.CrossRefGoogle Scholar
  67. 67.
    Zhang, P., & Miao, G. (2014). Energy-efficient clustering design for M2M communications. In 2014 IEEE global conference on signal and information processing (GlobalSIP) (pp. 163–167).Google Scholar
  68. 68.
    Vázquez-Gallego, F. V., Alonso-Zarate, J., & Alonso, L. (2013). Energy and delay analysis of contention resolution mechanisms for machine-to-machine networks based on low-power WiFi. In 2013 IEEE international conference on communications (ICC) (pp. 2235–2240).Google Scholar
  69. 69.
    Laya, A., Alonso, L., & Alonso-Zarate, J. (2015). Contention resolution queues for massive machine type communications in LTE. In 2015 IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 2314–2318).Google Scholar
  70. 70.
    Xu, W., & Campbell, G. (1992). A near perfect stable random access protocol for a broadcast channel. In IEEE international conference on communications, 1992. ICC ’92, conference record, SUPERCOMM/ICC ’92, discovering a new world of communications (Vol. 1, pp. 370–374).Google Scholar
  71. 71.
    Rigazzi, G., Pratas, N. K., Popovski, P., & Fantacci, R. (2015). Aggregation and trunking of M2M traffic via D2D connections. In 2015 IEEE international conference on communications (ICC) (pp. 2973–2978).Google Scholar
  72. 72.
    Laya, A., Alonso, L., & Alonso-Zarate, J. (2015). Efficient contention resolution in highly dense LTE networks for machine type communications. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–7).Google Scholar
  73. 73.
    Park, C. W., Hwang, D., & Lee, T. J. (2014). Enhancement of IEEE 802.11 ah MAC for M2M communications. IEEE Communications Letters, 18(7), 1151–1154.CrossRefGoogle Scholar
  74. 74.
    Wang, G., Zhong, X., Mei, S., & Wang, J. (2010). An adaptive medium access control mechanism for cellular based machine to machine (M2M) communication. In 2010 IEEE international conference on wireless information technology and systems (ICWITS) (pp. 1–4). IEEE.Google Scholar
  75. 75.
    Fullmer, C. L., & Garcia-Luna-Aceves, J. J. (1995). Floor acquisition multiple access (FAMA) for packet-radio networks. In ACM SIGCOMM computer communication review (Vol. 25, pp. 262–273). ACM.Google Scholar
  76. 76.
    Si, P., Yang, J., Chen, S., & Xi, H. (2015). Adaptive massive access management for QoS guarantees in M2M communications. IEEE Transactions on Vehicular Technology, 64(7), 3152–3166.Google Scholar
  77. 77.
    Djiroun, F. Z., & Djenouri, D. (2016). MAC protocols with wake-up radio for wireless sensor networks: A review. IEEE Communications Surveys Tutorials, 99, 1–1.Google Scholar
  78. 78.
    Rinne, J., Keskinen, J., Berger, P. R., Lupo, D., & Valkama, M. (2017). Viability bounds of M2M communication using energy-harvesting and passive wake-up radio. IEEE Access, 99, 1–1.Google Scholar
  79. 79.
    Dong, Q., & Dargie, W. (2013). A survey on mobility and mobility-aware MAC protocols in wireless sensor networks. IEEE Communications Surveys Tutorials, 15(1), 88–100.CrossRefGoogle Scholar
  80. 80.
    Ye, W., Heidemann, J., & Estrin, D. (2004). Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking, 12(3), 493–506.CrossRefGoogle Scholar
  81. 81.
    Schmitt, J. B., & Roedig, U. (2005). Sensor network calculus—A framework for worst case analysis (pp. 141–154). Berlin: Springer.Google Scholar
  82. 82.
    Park, H., Lee, C., Lee, Y. S., & Kim, E.-J. (2016). Performance analysis for contention adaptation of M2M devices with directional antennas. The Journal of Supercomputing, 72(9), 3387–3408.CrossRefGoogle Scholar
  83. 83.
    Kwon, J.-H., & Kim, E.-J. (2016). Asymmetric directional multicast for capillary machine-to-machine using mmwave communications. Sensors, 16(4), 515.CrossRefGoogle Scholar
  84. 84.
    Wu, H., Zhu, C., La, R. J., Liu, X., & Zhang, Y. (2012). Fast adaptive S-ALOHA scheme for event-driven machine-to-machine communications. In 2012 IEEE vehicular technology conference (VTC Fall) (pp. 1–5).Google Scholar
  85. 85.
    Khan, R. A. M., & Karl, H. (2014). MAC protocols for cooperative diversity in wireless LANs and wireless sensor networks. IEEE Communications Surveys & Tutorials, 16(1), 46–63.CrossRefGoogle Scholar
  86. 86.
    Park, I., Kim, D., & Har, D. (2015). MAC achieving low latency and energy efficiency in hierarchical M2M networks with clustered nodes. IEEE Sensors Journal, 15(3), 1657–1661.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Communication Technology and NetworkUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Laboratory of Computational Sciences and Mathematical Physics, Institute for Mathematical ResearchUniversiti Putra MalaysiaSelangorMalaysia

Personalised recommendations