Advertisement

Telecommunication Systems

, Volume 68, Issue 2, pp 373–384 | Cite as

Fairness constrained diffusion adaptive power control for dense small cell network

  • Zhirong Luan
  • Hua Qu
  • Jihong Zhao
  • Badong Chen
  • Jose C. Principe
Article

Abstract

Small cell is an emerging and promising technology for improving hotspots coverage and capacity, which tends to be densely deployed in populated areas. However, in a dense small cell network, the performances of users differ vastly due to the random deployments and the interferences. To guarantee fair performance among users in different cells, we propose a new distributed strategy for fairness constrained power control, referred to as the diffusion adaptive power control (DAPC). DAPC achieves overall network fairness in a distributed manner, in which each base station optimizes a local fairness with little information exchanged with neighboring cells. We study several adaptive algorithms to implement the proposed DAPC strategy. To improve the efficiency of the standard least mean square algorithm (LMS), we derive an adaptive step-size logarithm LMS algorithm, and discuss its convergence properties. Simulation results confirm the efficiency of the proposed methods.

Keywords

Fairness Dense small cell network Power control Diffusion Adaptive step-size logarithm LMS 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 61372092 and “863” Fund under Grants 2014AA01A701

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.CrossRefGoogle Scholar
  2. 2.
    Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.CrossRefGoogle Scholar
  3. 3.
    Abdelnasser, A., Hossain, E., & Kim, D. (2014). Clustering and resource allocation for dense femtocells in a two-tier cellular OFDMA network. IEEE Transactions on Wireless Communications, 13(3), 1628–1641.CrossRefGoogle Scholar
  4. 4.
    Pateromichelakis, E., Shariat, M., Quddus, A., Dianati, M., & Tafazolli, R. (2013). Dynamic clustering framework for multi-cell scheduling in dense small cell networks. IEEE Communications Letters, 17(9), 1802–1805.CrossRefGoogle Scholar
  5. 5.
    Cheung, W. C., Quek, T. Q. S., & Kountouris, M. (2012). Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks. IEEE Journal on Selected Areas in Communications, 30(3), 561–574.CrossRefGoogle Scholar
  6. 6.
    Chu, X., Wu, Y., Lopez-Perez, D., & Tao, X. (2011). On providing downlink services in collocated spectrum-sharing macro and femto networks. IEEE Transactions on Wireless Communications, 10(12), 4306–4315.CrossRefGoogle Scholar
  7. 7.
    Chandrasekhar, V., Andrews, J., Muharemovict, T., Shen, Z., & Gatherer, A. (2009). Power control in two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(8), 4316–4328.CrossRefGoogle Scholar
  8. 8.
    Saad, M. (2011). Joint admission and power control for quality-of-service in the wireless downlink. Journal of Network and Computer Applications, 34(2), 644–652.CrossRefGoogle Scholar
  9. 9.
    Shahid, A., Aslam, S., Kim, H. S., & Lee, K. G. (2014). Distributed joint resource and power allocation in self-organized femtocell networks: A potential game approach. Journal of Network and Computer Applications, 46, 280–292.CrossRefGoogle Scholar
  10. 10.
    Guo, S., Dang, C., & Liao, X. (2011). Joint opportunistic power and rate allocation for wireless ad hoc networks: An adaptive particle swarm optimization approach. Journal of Network and Computer Applications, 34(4), 1353–1365.CrossRefGoogle Scholar
  11. 11.
    Karamad, E., Adve, R. S., & Chow, J. (2014). Scalable and efficient power control algorithms for wireless networks. IEEE Transactions on Signal Processing, 62(8), 2028–2041.CrossRefGoogle Scholar
  12. 12.
    Ngo, D. T., Le, L. B., & Le-Ngoc, T. (2012). Distributed pareto-optimal power control for utility maximization in femtocell networks. IEEE Transactions on Wireless Communications, 11(10), 2012.CrossRefGoogle Scholar
  13. 13.
    Lopez-Perez, D., Valcarce, A., de la Roche, G., & Zhang, J. (2009). Ofdma femtocells: A roadmap on interference avoidance. IEEE Communications Magazine, 47(9), 41–48.CrossRefGoogle Scholar
  14. 14.
    Claussen, H., Ho, L. T., & Samuel, L. G. (2008). Self-optimization of coverage for femtocell deployments. In Wireless Telecommunications Symposium, 2008. WTS 2008 (pp. 278-285). IEEE.Google Scholar
  15. 15.
    Jung, H. B., & Kim, D. K. (2013). Power control of femtocells based on max–min fairness in heterogeneous networks. IEEE Communications Letters, 17(7), 1372–1375.CrossRefGoogle Scholar
  16. 16.
    3GPP, Technical Report 36.921 (v11.0.0), “Home eNode B radio frequency requirements analysis,” Sept. 2012.Google Scholar
  17. 17.
    Mo, J., & Walrand, J. (2000). Fair end-to-end window-based congestion control. IEEE/ACM Transactions on Networking, 8(5), 556–567.CrossRefGoogle Scholar
  18. 18.
    Hong, E. J., Yun, S. Y., & Cho, D.-H. (2009). Decentralized power control scheme in femtocell networks: A game theoretic approach. In 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 415–419).Google Scholar
  19. 19.
    Al-Zahrani, A. Y., & Yu, F. R. (2016). An energy-efficient resource allocation and interference management scheme in green heterogeneous networks using game theory. IEEE Transactions on Vehicular Technology, 65(7), 5384–5396.CrossRefGoogle Scholar
  20. 20.
    Van Chien, T., Björnson, E., & Larsson, E. G. (2017). Joint pilot sequence design and power control for max–min fairness in uplink massive MIMO. arXiv preprint arXiv:1703.01916
  21. 21.
    Guo, C., Liao, B., Huang, L., Zhang, P., Huang, M., & Zhang, J. (2016). On proportional fairness in power allocation for two-tone spectrum-sharing networks. IEEE Transactions on Vehicular Technology, 65(12), 10090–10096.CrossRefGoogle Scholar
  22. 22.
    Ji, H., & Huang, C.-Y. (1998). Non-cooperative uplink power control in cellular radio systems. Wireless Networks, 4(3), 233–240.CrossRefGoogle Scholar
  23. 23.
    Han, Z., & Liu, K. (2005). Noncooperative power-control game and throughput game over wireless networks. IEEE Transactions on Communications, 53(10), 1625–1629.CrossRefGoogle Scholar
  24. 24.
    Koskie, S., & Gajic, Z. (2005). A Nash game algorithm for sir-based power control in 3G wireless CDMA networks. IEEE/ACM Transactions on Networking, 13(5), 1017–1026.CrossRefGoogle Scholar
  25. 25.
    Rasti, M., Sharafat, A.-R., & Seyfe, B. (2009). Pareto-efficient and goal-driven power control in wireless networks: A game theoretic approach with a novel pricing scheme. IEEE/ACM Transactions on Networking, 17(2), 556–569.CrossRefGoogle Scholar
  26. 26.
    Li, W., Zheng, W., Su, T., & Wen, X. (2013). Distributed power control and pricing for two-tier OFMDA femtocell networks using fictitious game. In Wireless Communications and Networking Conference (WCNC), 2013 IEEE (pp. 470–475).Google Scholar
  27. 27.
    Ma, Y., Lv, T., & Lu, Y. (2013). Efficient power control in heterogeneous femto-macro cell networks. In Wireless Communications and Networking Conference (WCNC), 2013 IEEE (pp. 4215–4219).Google Scholar
  28. 28.
    Lopes, C., & Sayed, A. (2008). Diffusion least-mean squares over adaptive networks: Formulation and performance analysis. IEEE Transactions on Signal Processing, 56(7), 3122–3136.CrossRefGoogle Scholar
  29. 29.
    Hatoum, A., Aitsaadi, N., Langar, R., Boutaba, R., & Pujolle, G. (2011). FCRA: Femtocell cluster-based resource allocation scheme for ofdma networks. In 2011 IEEE International Conference on Communications (ICC) (pp. 1–6).Google Scholar
  30. 30.
    Widrow, B., & Stearns, S. D. (1985). Adaptive signal processing. Englewood Cliffs: Prentice-Hall PTR.Google Scholar
  31. 31.
    Liu, Y.-F., Dai, Y.-H., & Luo, Z.-Q. (2013). Joint power and admission control via linear programming deflation. IEEE Transactions on Signal Processing, 61(6), 1327–1338.CrossRefGoogle Scholar
  32. 32.
    Jain, R., Durresi, A., & Babic, G. (1999). Throughput fairness index: An explanation. ATM Forum/99-0045.Google Scholar
  33. 33.
    Femto-Forum. (2010). Interference management in OFDMA femtocells. In femtoforum.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Zhirong Luan
    • 1
  • Hua Qu
    • 1
  • Jihong Zhao
    • 1
    • 2
  • Badong Chen
    • 1
  • Jose C. Principe
    • 3
  1. 1.School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.School of Telecommunication and Information EngineeringXi’an University of Posts and TelecommunicationsXi’anPeople’s Republic of China
  3. 3.Computational NeuroEngineering Laboratory, Department of Electrical and Computer EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations