Advertisement

Telecommunication Systems

, Volume 68, Issue 1, pp 1–10 | Cite as

On the performance of M-QAM for Nakagami channels subject to gated noise

  • Wamberto J. L. Queiroz
  • Francisco Madeiro
  • Waslon T. A. Lopes
  • Marcelo S. Alencar
Article
  • 140 Downloads

Abstract

This paper presents a mathematical analysis of the joint effects of additive white Gaussian noise and gated noise in an M-ary Quadrature Amplitude Modulation communication system subject to Nakagami fading. This channel model is suitable to describe scenarios in which the Nakagami channel is affected by noisy signals originated from switching electronic circuits present in industrial environments, for example. Novel and exact analytic expressions for the bit error probability of the system are derived and computer simulations corroborate the analytic results.

Keywords

Nakagami fading Gated noise Mobile communications M-QAM 

Notes

Acknowledgements

The authors would like to express their thanks to the National Council for Research and Development (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES), the Institute of Advanced Studies in Communications (Iecom), the Graduate Program in Electrical Engineering, Federal University of Campina Grande (PPgEE), and the Graduate School of Electrical Engineering, Federal University of Bahia (PPGEE), for the financial support of this research.

References

  1. 1.
    Lago-Fernández, J., & Salter, J. (July 2004). Modelling impulsive interference in DVB-T—Statistical analysis, test waveforms and receiver performance. Technical Report 299, BBC Research & Development.Google Scholar
  2. 2.
    Al-Dweik, A., Hazmi, A., Sharif, B., & Tsimenidis, C. (2010). Efficient interleaving technique for OFDM system over impulsive noise channels. In Proceedings of the 21st international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 167–171).Google Scholar
  3. 3.
    Tepedelenlioğlu, C., & Gao, P. (2005). On diversity reception over fading channels with impulsive noise. IEEE Transactions on Vehicular Technology, 54(6), 2037–2047.CrossRefGoogle Scholar
  4. 4.
    Vempati, S. R., Pamula, V. K., Khan, H., & Tipparti, A. K. (Jan 2013). Blind multiuser detection in Nakagami-\(m\) fading channels with impulsive noise. In Proceedings of the 4th international conference on intelligent systems modelling simulation (ISMS) (pp. 519–523).Google Scholar
  5. 5.
    Cheffena, M. (2012). Industrial wireless sensor networks: Channel modeling and performance evaluation. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1–8.CrossRefGoogle Scholar
  6. 6.
    Madi, G., Vrigneau, B., Pousset, Y., Vauzelle, R., & Agba, B. L. (August 2010). Impulsive noise of partial discharge and its impact on minimum distance-based precoder of MIMO system. In Proceedings of the XVII European signal processing conference (pp. 1602–1606), Aalbor, Denmark.Google Scholar
  7. 7.
    Sukanesh, R., & Sundaraguru, R. (2011). Mitigation of impulse noise in OFDM systems. Journal of Information & Computational Science, 8(12), 2403–2409.Google Scholar
  8. 8.
    Hikita, M., Yamashita, H., Hoshino, T., Kato, T., Hayakawa, N., Ueda, T., et al. (1998). Electromagnetic noise spectrum caused by partial discharge in air at high voltage substations. IEEE Transactions on Power Delivery, 2(13), 434–439.CrossRefGoogle Scholar
  9. 9.
    Yacoub, M. D. (2000). Fading distributions and co-channel interference in wireless systems. IEEE Antennas and Propagation Magazine, 42(1), 150–160.CrossRefGoogle Scholar
  10. 10.
    Agrawal, A., & Kshetrimayum, R. S. (2015). Analysis of UWB communication over IEEE 802.15.3a channel by superseding lognormal shadowing by mixture of Gamma distributions. AEÜ–International Journal of Electronics and Communications, 69(12), 1795–1799.CrossRefGoogle Scholar
  11. 11.
    He, W., Lei, H., & Pan, G. (2016). Performance modeling and analysis on conditional DF relaying scheme over Nakagami-\(m\) fading channels with integral \(m\). AEÜ—International Journal of Electronics and Communications, 70(6), 743–749.CrossRefGoogle Scholar
  12. 12.
    Nakagami, M. (December 1960). The \(m\)-distribution—A general formula of intensity distribution of rapid fading. In Statistical methods in radio wave propagation (pp. 3–36), Pergamon Press, Oxford.Google Scholar
  13. 13.
    Beaulieu, N. C., & Chen, Y. (2007). A MAP estimator for the \(m\) parameter in Nakagami fading ultra-wide bandwidth indoor channels. IEEE Transactions on Wireless Communications, 6(3), 840–844.CrossRefGoogle Scholar
  14. 14.
    Lohan, E. S., Pajala, E., Renfors, M., Lakhzouri, A., & Laitinen, H. (September 2007). Indoor fading distributions for GPS-based pseudolite signals. In Proceedings of the international workshop on satellite and space communications (IWSSC’07) (pp. 6–10), Salzburg, Austria.Google Scholar
  15. 15.
    Souza, R. A. A., Cogliatti, R., & Yacoub, M. D. (2014). Efficient acceptance-rejection method for Nakagami-\(m\) complex samples. IEEE Wireless Communications Letters, 3(1), 94–96.CrossRefGoogle Scholar
  16. 16.
    Queiroz, W. J. L., Lopes, W. T. A., Madeiro, F., & Alencar, M. S. (September 2010). An alternative method to compute the bit error probability of modulation schemes subject to Nakagami-\(m\) fading. EURASIP Journal on Advances in Signal Processing, 2010, 1–12.Google Scholar
  17. 17.
    Ata, S. O., & Altunbas, I. (2016). Fixed-gain AF-PLNC over cascaded Nakagami-\(m\) fading channels for vehicular communications. AEÜ–International Journal of Electronics and Communications, 70(4), 510–516.CrossRefGoogle Scholar
  18. 18.
    Soury, H., Yilmaz, F., & Alouini, M. S. (October 2013). Error rates of M-PAM and M-QAM in generalized fading and generalized Gaussian noise environments. IEEE Communications Letters, 17(10), 1932–1935.Google Scholar
  19. 19.
    Ayat, M., Mirzakuchaki, S., & Beheshti-Shirazi, A. (August 2016). Design and implementation of high throughput, robust, parallel M-QAM demodulator in digital communication receivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(8), 1295–1304.Google Scholar
  20. 20.
    Araújo, E. R., Queiroz, W. J. L., Madeiro, F., Lopes, W. T. A., & Alencar, M. S. (2015). On gated Gaussian impulsive noise in \(M\)-QAM with optimum receivers. Journal of Communication and Information Systems, 30(1), 10–20.CrossRefGoogle Scholar
  21. 21.
    Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. 22.
    Cho, K., & Yoon, D. (2002). On the general BER expression of one-and two-dimensional amplitude modulations. IEEE Transactions on Communications, 50(7), 1074–1080.CrossRefGoogle Scholar
  23. 23.
    Craig, J. W. (1991). A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations. In Proceedings of military communications conference (MILCOM’91) (pp. 571–575).Google Scholar
  24. 24.
    Gradshteyn, I. S., & Ryzhik, I. M. (1979). Table of integrals, series, and products. Cambridge: Academic.Google Scholar
  25. 25.
    Fikioris, G. (2006). Integral evaluation using the Mellin transform and generalized hypergeometric functions: Tutorial and applications to antenna problems. IEEE Transactions on Antennas and Propagation, 54(12), 3895–3907.CrossRefGoogle Scholar
  26. 26.
    Pearson, J. (September 2009). Computation of hypergeometric functions. Master’s thesis, Worcester College, University of Oxford, Oxford.Google Scholar
  27. 27.
    Robalo, T. C. G. (2006). Séries Hipergeométricas Generalizadas no Contexto da Teoria das Funções Hipercomplexas. Master’s thesis, Universidade de Aveiro, Aveiro.Google Scholar
  28. 28.
    Queiroz, W. J. L., Alencar, M. S., Lopes, W. T. A., & Madeiro, F. (October 2010). Error probability in multichannel reception with \(M\)-QAM, \(M\)-PAM and R-QAM schemes under generalized fading. IEICE Transactions on Communications, E93-B(10), 2677–2877.Google Scholar
  29. 29.
    Queiroz, W. J. L., Madeiro, F., Lopes, W. T. A., & Alencar, M. S. (May 2013). Performance analysis of generalized QAM modulation under \(\eta -\mu \) and \(\kappa -\mu \) fading. EURASIP Journal on Advances in Signal Processing, 2013(1), 1–10.Google Scholar
  30. 30.
    Alouini, M. S., & Goldsmith, A. J. (1999). A unified approach for calculating error rates of linearly modulated signals over generalized fading channels. IEEE Transactions on Communications, 47(9), 1324–1334.CrossRefGoogle Scholar
  31. 31.
    Ropokis, G. A., Rontogianis, A. A., Mathiopoulos, P. T., & Berberidis, K. (September 2010). An exact performance analysis of MRC/OSTBC over generalized fading channels. IEEE Transactions on Communications, 58(9), 2486–2492.Google Scholar
  32. 32.
    Ulusoy, A. H., & Rizaner, A. (April 2008). Adaptive path selective fuzzy decorrelating detector under impulsive noise for multipath fading CDMA systems. IEEE Communications Letters, 12(4), 228–230.Google Scholar
  33. 33.
    Liu, X., & Bialkowski, M. E. (2010). Effect of antenna mutual coupling on MIMO channel estimation and capacity. International Journal of Antennas and Propagation, 2010, 1–9. Article ID 306173.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Wamberto J. L. Queiroz
    • 1
  • Francisco Madeiro
    • 2
  • Waslon T. A. Lopes
    • 3
  • Marcelo S. Alencar
    • 1
    • 4
  1. 1.Department of Electrical EngineeringFederal University of Campina GrandeCampina GrandeBrazil
  2. 2.Polytechnique School of PernambucoUniversity of PernambucoRecifeBrazil
  3. 3.Department of Electrical EngineeringFederal University of ParaíbaJoão PessoaBrazil
  4. 4.Department of Electrical EngineeringFederal University of BahiaSalvadorBrazil

Personalised recommendations