Advertisement

Telecommunication Systems

, Volume 66, Issue 4, pp 701–712 | Cite as

Energy efficient dynamic optimal control of LTE base stations: solution and trade-off

  • Dan Huang
  • Wei Wei
  • Yuan Gao
  • Mengshu Hou
  • Yi Li
  • Houbing Song
Article
  • 139 Downloads

Abstract

The demand to reduce energy consumption in wireless networks has become popular recently. In this paper, aimed at the problem that how to reduce energy consumption through on-off control in wireless networks without losing system performance significantly, we present our solution both in a single base station and the multi-base station scenario. Under the assumption that the network arrival and departure process are Markov, we first model and solve the problem of optimal on-off control in single base station scenario using dynamic integer programming (DIP) method, then we extend the optimal solution to multi-base station scenario and raise an effective heuristic method in two layer networks, the trade-off between QoS level and energy consumption has been given according to our analysis and simulation. Numerical results are provided to demonstrate that the proposed method offer significant gain in terms of the energy efficiency.

Keywords

Energy efficient On-off control Trade-off Flexible coverage Integer programming 

References

  1. 1.
    Vetter, P., Ayhan, T., Kanonakis, K., Lannoo, B., Lee, K. L., Lefevre, L., Monney, C., Saliou, F., & Yin, X. (2013). Towards energy effcient wireline networks, an update from greentouch. In Optoelectronics and communications conference held jointly with 2013 international conference on photonics in switching (OECC/PS) 2013 18th (pp. 1–2). IEEE.Google Scholar
  2. 2.
    Olsson, M., Fehske, A., Hevizi, L., Blume, O., Vidacs, A., Godor, I., et al. (2012). Integration strategy of earth energy effciency enablers. Future Network Mobile Summit (FutureNetw), 2012, 1–8.Google Scholar
  3. 3.
    Huq, K. M. S., Mumtaz, S., Rodriguez, J., & Aguiar, R. L. (2012). Comparison of energy-effciency in bits per joule on different downlink comp techniques. In 2012 IEEE international conference on communications (ICC) (pp. 5716–5720).Google Scholar
  4. 4.
    Buvaneswari, A., Drabeck, L., Nithi, N., Haner, M., Polakos, P., & Sawkar, C. (2010). Self-optimization of lte networks utilizing celnet xplorer. Bell Labs Technical Journal, 15(3), 99–117.CrossRefGoogle Scholar
  5. 5.
    Dini, P., Miozzo, M., Bui, N., & Baldo, N. (2013). A model to analyze the energy savings of base station sleep mode in lte hetnets. In Green computing and communications (GreenCom), 2013 IEEE and internet of things (iThings/CPSCom), IEEE international conference on and IEEE cyber, physical and social computing (pp. 1375–1380).Google Scholar
  6. 6.
    Gao, Y., Li, Y., Yu, H., Wang, X., Gao, S., & Xue, P. (2015). Energy efficient cooperative sleep control using small cell for wireless networks. International Journal of Distributed Sensor Networks, 2015, 10. doi: 10.1155/2015/903853.Google Scholar
  7. 7.
    Saker, L., Elayoubi, S. E., & Chahed, T. (2010). Minimizing energy consumption via sleep mode in green base station. In Wireless communications and networking conference (WCNC) 2010 (pp. 1–6). IEEE.Google Scholar
  8. 8.
    Meng, C., Li, X., Lu, X., Liang, T., Jiang, Y., & Heng, W. (2013). A low complex energy saving access algorithm based on base station sleep mode. In 2013 IEEE/CIC international conference on communications in China (ICCC) (pp. 491–495).Google Scholar
  9. 9.
    Oh, E., Son, K., & Krishnamachari, B. (2013). Dynamic base station switching-on/off strategies for green cellular networks. IEEE Transactions on Wireless Communications, 12(5), 2126–2136.CrossRefGoogle Scholar
  10. 10.
    Bousia, A., Kartsakli, E., Alonso, L., & Verikoukis, C. (2012). Dynamic energy efficient distance-aware base station switch on/off scheme for LTE-advanced, In Proceedings of the IEEE GLOBECOM December 2012 (pp. 1532–1537).Google Scholar
  11. 11.
    Marsan, M. A., Chiaraviglio, L., Ciullo, D., & Meo, M. (2009). Optimal energy savings in cellular access networks. In IEEE international conference on communications workshops (ICC) June 2009.Google Scholar
  12. 12.
    Bousia, A., Kartsakli, E., Antonopoulos, A., Alonso, L., & Verikoukis, C. (2013). Game theoretic approach for switching off base stations in multi-operator environments. In IEEE international conference on communications (ICC) June 2013.Google Scholar
  13. 13.
    He, C., Li, G. Y., Zheng, F.-C., & You, X. (2014). Energy-effcient resource allocation in ofdm systems with distributed antennas. IEEE Transactions on Vehicular Technology, 63(3), 1223–1231.CrossRefGoogle Scholar
  14. 14.
    Hu, S., Guo, H., Jin, C., Huang, Y., Yu, B., & Li, S. (2016). Frequency-domain oversampling for cognitive CDMA systems: Enabling robust and massive multiple access for internet of things. In IEEE Access (vol. 4, pp. 4583–4589).Google Scholar
  15. 15.
    Hu, S., Bi, G., Guan, Y. L., & Li, S. (2013). TDCS-based cognitive radio networks with multiuser interference avoidance. IEEE Transactions on Communications, 61(12), 4828–4835.CrossRefGoogle Scholar
  16. 16.
    Hu, S., Liu, Z., Guan, Y. L., et al. (2014). Sequence design for cognitive CDMA communications under arbitrary spectrum hole constraint. IEEE Journal on Selected Areas in Communications, 32(11), 1974–1986.CrossRefGoogle Scholar
  17. 17.
    Helmy, A., Musavian, L., & Le-Ngoc, T. (2013). Energy-effcient power adaptation over a frequency-selective fading channel with delay and power constraints. IEEE Transactions on Wireless Communications, 12(9), 4529–4541.CrossRefGoogle Scholar
  18. 18.
    Xu, Datong, Ren, Pinyi, Sun, Li, & Song, Houbing. (2016). Precoder-and-receiver design scheme for multi-user coordinated multi-point in LTE-A and fifth generation systems. IET Communications, 10(3), 292–299.CrossRefGoogle Scholar
  19. 19.
    Song, Houbing, Srinivasan, Ravi, Sookoor, Tamim, Jeschke, Sabina, & Cities, Smart. (2017). Foundations, principles and applications. Hoboken, NJ: Wiley.Google Scholar
  20. 20.
    Jeschke, S., Brecher, C., Song, H., & Rawat, D. (2017). Industrial internet of things. Cham: Springer.CrossRefGoogle Scholar
  21. 21.
    Shojafar, M., Cordeschi, N., Abawajy, J. H., & Baccarelli, E. (2015). Adaptive energy-efficient qos-aware scheduling algorithm for TCP/IP mobile cloud. In 2015 IEEE Globecom Workshops (GC Wkshps) (pp. 1–6). IEEE.Google Scholar
  22. 22.
    Ahmad, R. W., et al. (2016). A survey on energy estimation and power modeling schemes for smartphone applications. International Journal of Communication Systems. doi: 10.1002/dac.3234.
  23. 23.
    Song, H., Rawat, D., Jeschke, S., & Brecher, C. (2016). Cyber-physical systems: Foundations, principles and applications. Boston, MA: Academic Press.Google Scholar
  24. 24.
    Jiang, D., Zhang, P., Lv, Z., & Song, H. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal, 3(6), 1437–1447.CrossRefGoogle Scholar
  25. 25.
    Shojafar, M., Canali, C., Lancellotti, R., & Abawajy, J. (2016). Adaptive computing-plus-communication optimization framework for multimedia processing in cloud systems. IEEE Transactions on Cloud Computing, 99, 1–1.Google Scholar
  26. 26.
    Shen, H., Xu, W., Jin, S., & Zhao, C. (2014). Joint transmit and receive beamforming for multiuser mimo downlinks with channel uncertainty. IEEE Transactions on Vehicular Technology, 63(5), 2319–2335.CrossRefGoogle Scholar
  27. 27.
    Lee, H., Kim, S., & Lee, S. (2014). Combinatorial orthogonal beamforming for joint processing and transmission. IEEE Transactions on Communications, 62(2), 625–637.CrossRefGoogle Scholar
  28. 28.
    Hoymann, C., Larsson, D., Koorapaty, H., & Cheng, J.-F. (2013). A lean carrier for lte. IEEE Communications Magazine, 51(2), 74–80.CrossRefGoogle Scholar
  29. 29.
    Gao, Y., Li, Y., Yu, H., Wang, X., & Gao, S. (2014). Energy effcient cooperative cell control of LTE-advanced cellular networks. In Control and system graduate research colloquium (ICSGRC) 2014 (pp. 263–267) IEEE 5th.Google Scholar
  30. 30.
    Gao, Y., Li, Y., Yu, H., Wang, X., & Gao, S. (2012). System level performance of comp ir-harq over x2 interface in 3gpp lte-advanced system. In 2012 9th international conference on communications (COMM) (pp. 177–180).Google Scholar
  31. 31.
    Li, X., Toseef, U., Weerawardane, T., Bigos, W., Dulas, D., Goerg, C., Timm-Giel, A., & Klug, A. (2010). Dimensioning of the LTE s1 interface. In Wireless and mobile networking conference (WMNC), 2010 Third Joint IFIP (pp. 1–6).Google Scholar
  32. 32.
    Soh, Y. S., Quek, T. Q. S., Kountouris, M., & Shin, H. (2013). Energy effcient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 31(5), 840–850.CrossRefGoogle Scholar
  33. 33.
    Govindasamy, S., Bliss, D. W., & Staelin, D. H. (2013). Asymptotic spectral effciency of the uplink in spatially distributed wireless networks with multi-antenna base stations. IEEE Transactions on Communications, 61(7), 100–112.CrossRefGoogle Scholar
  34. 34.
    Kong, P.-Y. (2014). Optimal probabilistic policy for dynamic resource activation using markov decision process in green wireless networks. IEEE Transactions on Mobile Computing, 13(10), 2357–2368.CrossRefGoogle Scholar
  35. 35.
    Desset, C., Debaillie, B., & Louagie, F. (2013). Towards a fexible and future-proof power model for cellular base stations. In 2013 24th Tyrrhenian international workshop on digital communications–green ICT (TIWDC) (pp. 1–6).Google Scholar
  36. 36.
    Holtkamp, H., Auer, G., Giannini, V., & Haas, H. A. (2013). Parameterized base station power model. IEEE Communications Letters, 17(11), 2033–2035.CrossRefGoogle Scholar
  37. 37.
    Chitti, K., Kuang, Q., & Speidel, J. (2013). Joint base station association and power allocation for uplink sum-rate maximization. In 2013 IEEE 14th workshop on signal processing advances in wireless communications (SPAWC) (pp. 6–10).Google Scholar
  38. 38.
    Incebacak, D., Tavli, B., Bicakci, K., & Altin-Kayhan, A. (2013). Optimal number of routing paths in multi-path routing to minimize energy consumption in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2013(1), 252.CrossRefGoogle Scholar
  39. 39.
    Abramowitz, M., & Stegun, I. A. (2006). Handbook of mathematical functions with formulas, graphs, and mathematical tables. In Conference on XYZ Dover.Google Scholar
  40. 40.
    Subramanian, S., Shea, J. M., Pasiliao, E. L., Carvalho, M. M., & Dixon, W. E. (2014). Effcient spectrum allocation in multiband csma networks. In 2014 IEEE wireless communications and networking conference (WCNC) (pp. 1591–1596).Google Scholar
  41. 41.
    Pinola, J., Perala, J., Jurmu, P., et al. (2013). A systematic and flexible approach for testing future mobile networks by exploiting a wrap-around testing methodology. IEEE Communications Magazine, 51(3), 160–167.CrossRefGoogle Scholar
  42. 42.
    Gao, Y., et al. (2015). A novel energy aware dynamic on-off control of base stations in wireless networks. In 5 IEEE 16th international conference on communication technology (ICCT) Hangzhou (pp. 132–137).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.University of Electronic Science and Technology of ChinaSichuanChina
  2. 2.Department of Electrical EngineeringTsinghua University and China Defense Science and Technology CenterBeijingChina
  3. 3.The High School Affiliated to Renmin University of ChinaBeijingChina
  4. 4.The Department of Electrical and Computer EngineeringWest Virginia UniversityMontgomeryUSA
  5. 5.Department of Electrical and Computer EngineeringXi’an University of TechnologyXi’anChina

Personalised recommendations