Advertisement

Telecommunication Systems

, Volume 66, Issue 4, pp 615–628 | Cite as

Towards SDN/NFV-enabled satellite networks

  • Georgios Gardikis
  • Harilaos Koumaras
  • Chris Sakkas
  • Vaios Koumaras
Article

Abstract

The telecom community is during the last years witnessing a paradigm shift towards the virtualisation/ “softwarisation” of the network infrastructure, mostly driven by the concepts of software defined networking (SDN) and network functions virtualisation (NFV). At the same time, satellite telecommunication technologies, although rapidly advancing in various fields, have not so far adequately followed this trend. The paper investigates the applicability of SDN and NFV technologies to satcom platforms and determines the benefits and the challenges associated with the integration of satellite infrastructures into future software-based networks. To that end, it identifies specific use cases which clearly benefit from the softwarisation of the satcom network and proposes a functional architecture for federated satellite-terrestrial software-based networks. The architecture is implemented in a lab environment which is used to validate some of the proposed use cases. Furthermore, a techno-economic analysis is conducted, which presents clear economic benefits via the introduction of SDN and NFV in the satcom ecosystem.

Keywords

Satellite networks Softwarisation SDN NFV Satellite-terrestrial integration 

Notes

Acknowledgements

This work has been performed under the European Space Agency ARTES 1 project CloudSat (“Scenarios for integration of Satellite Components in Future Networks”—ESA/ESTEC Contr. No.: 4000110995/14/NL/AD). The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency. The authors would like to thank Mrs. Maria Guta (ESA) for her guidance and support throughout the whole study.

References

  1. 1.
    ESA ARTES 1 CloudSat—scenarios for integration of satellite components in future networks, https://artes.esa.int/projects/cloudsat.
  2. 2.
    Open Networking Foundation, https://www.opennetworking.org.
  3. 3.
    OpenDaylight network controller, http://www.opendaylight.org.
  4. 4.
    OpenNaaS—open platform for network-as-a-service, http://opennaas.org.
  5. 5.
    ONOS—A new carrier-grade SDN network operating system designed for high availability, performance, scale-out, http://onosproject.org/.
  6. 6.
    OpenStack Cloud Operating System, http://www.openstack.org.
  7. 7.
  8. 8.
    OPNFV, The Open Platform for NFV, http://www.opnfv.org.
  9. 9.
    Bernardos, C. J., de la Oliva, A., Serrano, P., Banchs, A., Contreras, L. M., Jin, H., et al. (2014). An architecture for software defined wireless networking. IEEE Wireless Communication Magazine, 21(3), 52–61.CrossRefGoogle Scholar
  10. 10.
    China Mobile Research Institute (2011). C-RAN: The road towards green RAN, White Paper, ver. 2.5.Google Scholar
  11. 11.
    ETSI GS NFV 002. Network functions virtualisation (NFV): Architectural framework, Ver. 1.1.1. http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf.
  12. 12.
    FP7 OFELIA project. OpenFlow in Europe: Linking infrastructure and applications, http://www.fp7-ofelia.eu/.
  13. 13.
    AGC Research (2013). Business cases for Brocade software-defined networking use cases. http://acgcc.com/wp-content/uploads/2014/08/BUSINESS-CASES-FOR-BROCADE-SOFTWARE-DEFINED-NETWORKING-USE-CASES.pdf.
  14. 14.
    Jain, S. et al. (2013). B4: Experience with a globally-deployed software-defined WAN. In Proceeding of ACM SIGCOMM ’13, August 12-16.Google Scholar
  15. 15.
    ETSI GS NFV 001 (2013). Network functions virtualisation (NFV): Use cases, Ver 1.1.1. http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/001/01.01.01_60/gs_NFV-INF001v010101p.pdf.
  16. 16.
  17. 17.
    FP7 Mobile Cloud Networking project, http://www.mobile-cloud-networking.eu/.
  18. 18.
    Bertaux, L., Medjiah, S., Berthou, P., Abdellatif, S., Hakiri, A. & Gelard P. (2015) Software defined networking and virtualization for broadband satellite networks. In IEEE Communications Magazine, March 2015.Google Scholar
  19. 19.
    Ferrus, R., Koumaras, H., Sallent, O., Agapiou, G., Rasheed, T., Kourtis, M.-A., et al. (2015). SDN/NFV-enabled satellite communications networks: Opportunities, scenarios and challenges. Physical Communication, 18, 95–112.CrossRefGoogle Scholar
  20. 20.
    FP7 T-NOVA project. Network functions as-a-service over virtualised infrastructures, http://www.t-nova.eu.
  21. 21.
    G. Xilouris (Ed.) et al. D2.22: Overall system architecture and interfaces, T-NOVA project deliverable, http://www.t-nova.eu/wp-content/uploads/2016/03/TNOVA_D2.22_Overall_System_Architecture_and_Interfaces_v1.0.pdf.
  22. 22.
    ETSI GS NFV 003 (2013). Terminology for main concepts in NFV, ver 1.1.1. http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.02.01_60/gs_NFV003v010201p.pdf.
  23. 23.
    Open vSwitch, Production Quality, Multilayer Open Virtual Switch, http://openvswitch.org/.
  24. 24.
    OpenSAND satellite network emulator, http://opensand.org/.
  25. 25.
    Hewlett-Packard white paper (2014). The reality of cost reduction. https://www.hpe.com/h20195/V2/getpdf.aspx/4AA5-2160ENW.pdf?ver=Rev%201.
  26. 26.
    Alcatel-Lucent white paper (2014). Business case for moving DNS to the cloud. http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2014/10349-business-case-moving-dns-the-cloud.pdf.
  27. 27.
    ACG Research (2015). Business Case for a Common NFV Platform. http://acgcc.com/wp-content/uploads/2015/08/Business-Case-for-a-Common-NFV-Platform_ACG.pdf.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Georgios Gardikis
    • 1
  • Harilaos Koumaras
    • 2
  • Chris Sakkas
    • 2
  • Vaios Koumaras
    • 2
  1. 1.R&D DepartmentSpace Hellas S.A.AthensGreece
  2. 2.National Centre for Scientific Research “Demokritos”AthensGreece

Personalised recommendations