Smart heterogeneous networks: a 5G paradigm


An exponential growth in data demand on wireless networks and wireless link capacity approaching its theoretical limits, bound us to find new solutions and innovative network designs to handle the enormous amount of traffic. In this paper, we discuss long term evolution-advance (LTE-A) heterogeneous networks (HetNets) being a most effective solution to break this wireless cellular capacity crunch. LTE-A HetNets provide adequate increase in capacity by utilizing multi-tier architecture consisting of different type of cells i.e macro cell, small cell, relay and device to device. However this increase in capacity comes with certain challenges in HetNets outlined in this article. Considering inter cell interference coordination (ICIC) as biggest challenge in LTE-A HetNets, this article surveys state of the art LTE-A HetNets deployments with focus on ICIC. Effective ICIC techniques allow further substantial capacity increase. We give state of the art ICIC on air-interface as well as backhaul strategies for effective ICIC in LTE-A HetNets. Operators perspective of LTE-A HetNets with some insight to future of 5G LTE-A HetNets is provided. We also provide simulation results to show how LTE-A HetNets lead to realize ambitious targets of 5G technology in terms of capacity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15



Third generation partnership project


Fith generation


Almost blank sub-frame


Adaptive frequency reuse


Access point


Bit error rate


Base station


Carrier aggregation


Capital expenditure


Component carrier


Coordinated multi-point


Cloud radio access network


Cell range expansion


Cognitive radio networks


Coordinated scheduling and coordinated beam forming


Closed subscriber group


Channel state information


Device to device communication


Downlink high interference indicator


Dynamic point selection


Digital subscriber line


End to end


Energy efficiency


Evolved node B


Frequency division duplex


Fractional frequency reuse


Fast fourier transform


Generalized frequency division multiple access


High definition


Home eNB


Heterogenous network


High interference indicator


Inter antenna interference


Inter channel interference


Inter cell interference coordination


Inverse fast fourier transform


Interference overload indicator


Joint processing


Joint transmission


Key performance indicator


Light-emitting diode


Line of sight


Long term evolution-advance


Medium access control


Minimum cost network flow


Multiple input multiple output


Millimeter wave


Next generation passive optical networks


Non orthogonal multiple access


Orthogonal frequency division multiple access


Orthogonal frequency partitioning


Operational expenditure


Open subscriber group


Peak to average power ratio


Primary component carrier


Physical downlink control channel


Physical downlink shared channel


Partial frequency reuse


Quality of service


Resource block




Relay node


Relative narrow-band transmit power


Remote radio head


Round trip time


Secondary component carrier


Software defined radio


Spectral efficiency


Soft frequency reuse


Single to interference and noise ratio


Spatial modulation


Transmission time interval


User equipment


Visible light communication


  1. 1.

    Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.

    Article  Google Scholar 

  2. 2.

    Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2015). System-level performance of downlink non-orthogonal multiple access (noma) under various environments. In Vehicular technology conference (VTC Spring), 2015 IEEE 81st (pp. 1–5).

  3. 3.

    Aydin, O., Aziz, D., & Jorswieck, E. (2014). Radio resource sharing among operators through mimo based spatial multiplexing in 5G systems. In Globecom Workshops (GC Wkshps), 2014 (pp. 1063–1068).

  4. 4.

    Nair, K. V., & Prabhu, P. R. (2014). A comparative study on multiple active spatial modulation in mimo systems. In Proceedings of the international conference on control, instrumentation, communication and computational technologies (ICCICCT), 2014 (pp. 457–460).

  5. 5.

    Renzo, M. D., Haas, H., Ghrayeb, A., Sugiura, S., & Hanzo, L. (2014). Spatial modulation for generalized mimo: Challenges, opportunities, and implementation. Proceedings of the IEEE, 102(1), 56–103.

    Article  Google Scholar 

  6. 6.

    Gao, Z., Dai, L., Mi, D., Wang, Z., Imran, M., & Shakir, M. (2015). Mmwave massive-mimo-based wireless backhaul for the 5G ultra-dense network. IEEE Wireless Communications, 22(5), 13–21.

    Article  Google Scholar 

  7. 7.

    Rappaport, T., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.

    Article  Google Scholar 

  8. 8.

    Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.

    Article  Google Scholar 

  9. 9.

    Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.

    Article  Google Scholar 

  10. 10.

    Muttagi, S., Biradar, S., & Kushnure, D. (2015). 5G: A digital society. In Proceedings of the international conference on electrical, electronics, signals, communication and optimization (EESCO), 2015 (pp. 1–5).

  11. 11.

    Wu, S., Wang, H., & Youn, C. H. (2014). Visible light communications for 5G wireless networking systems: From fixed to mobile communications. IEEE Network, 28(6), 41–45.

    Article  Google Scholar 

  12. 12.

    Panzner, B., Zirwas, W., Dierks, S., Lauridsen, M., Mogensen, P., Pajukoski, K., & Miao, D. (2014). Deployment and implementation strategies for massive mimo in 5G. In Globecom Workshops (GC Wkshps), 2014 (pp. 346–351).

  13. 13.

    Qiao, D., Wu, Y., & Chen, Y. (2014). Massive mimo architecture for 5G networks: Co-located, or distributed? In Proceedings of the 11th international symposium on wireless communications systems (ISWCS), 2014 (pp. 192–197).

  14. 14.

    Ding, G., Wang, J., Wu, Q., dong Yao, Y., Li, R., Zhang, H., et al. (2015). On the limits of predictability in real-world radio spectrum state dynamics: From entropy theory to 5G spectrum sharing. IEEE Communications Magazine, 53(7), 178–183.

    Article  Google Scholar 

  15. 15.

    Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J., & Khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys and Tutorials, 18(1), 795–823.

    Article  Google Scholar 

  16. 16.

    Mesodiakaki, A., Adelantado, F., Alonso, L., & Verikoukis, C. (2015). Performance analysis of a cognitive radio contention-aware channel selection algorithm. IEEE Transactions on Vehicular Technology, 64(5), 1958–1972.

    Article  Google Scholar 

  17. 17.

    Galinina, O., Pyattaev, A., Andreev, S., Dohler, M., & Koucheryavy, Y. (2015). 5G multi-RAT LTE-WiFi ultra-dense small cells: Performance dynamics, architecture, and trends. IEEE Journal on Selected Areas in Communications, 33(6), 1224–1240.

    Article  Google Scholar 

  18. 18.

    Hachem, J., Karamchandani, N., & Diggavi, S. (2015). Content caching and delivery over heterogeneous wireless networks. In Proceedings of the IEEE conference on computer communications (INFOCOM), 2015 (pp. 756–764).

  19. 19.

    Jiang, L., Feng, G., & Qin, S. (2015). Cooperative content distribution for 5G systems based on distributed cloud service network. In Proceedings of the IEEE international conference on communication workshop (ICCW), 2015 (pp. 1125–1130).

  20. 20.

    Gupta, A., & Jha, R. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.

    Article  Google Scholar 

  21. 21.

    Davaslioglu, K., & Gitlin, R. D. (2016). 5G green networking: Enabling technologies, potentials, and challenges. In Proceedings of the IEEE 17th annual wireless and microwave technology conference (WAMICON), 2016 (pp. 1–6).

  22. 22.

    Zhang, S., Wu, Q., Xu, S., & Li, G. (2016). Fundamental green tradeoffs: Progresses, challenges, and impacts on 5G networks. IEEE Communications Surveys Tutorials, 99, 1.

    Google Scholar 

  23. 23.

    Olsson, M., Cavdar, C., Frenger, P., Tombaz, S., Sabella, D., & Jantti, R. (2013). 5green: Towards green 5G mobile networks. In Proceedings of the IEEE 9th international conference on wireless and mobile computing, networking and communications (WiMob), 2013 (pp. 212–216).

  24. 24.

    Saidul Huq, K., Mumtaz, S., Bachmatiuk, J., Rodriguez, J., Wang, X., & Aguiar, R. (2015). Green HetNet CoMP: Energy efficiency analysis and optimization. IEEE Transactions on Vehicular Technology, 64(10), 4670–4683.

    Article  Google Scholar 

  25. 25.

    Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.

    Article  Google Scholar 

  26. 26.

    Alouini, M.-S., & Goldsmith, A. (1999). Area spectral efficiency of cellular mobile radio systems. IEEE Transactions on Vehicular Technology, 48(4), 1047–1066.

    Article  Google Scholar 

  27. 27.

    Hamza, A. S., Khalifa, S. S., Hamza, H. S., & Elsayed, K. (2013). A survey on inter-cell interference coordination techniques in ofdma-based cellular networks. IEEE Communications Surveys Tutorials, 15(4), 1642–1670.

    Article  Google Scholar 

  28. 28.

    Kosta, C., Hunt, B., Quddus, A. U., & Tafazolli, R. (2013). On interference avoidance through inter-cell interference coordination (ICIC) based on OFDMA mobile systems. IEEE Communications Surveys Tutorials, 15(3), 973–995.

    Article  Google Scholar 

  29. 29.

    Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.

    Article  Google Scholar 

  30. 30.

    Lee, Y. L., Chuah, T. C., Loo, J., & Vinel, A. (2014). Recent advances in radio resource management for heterogeneous LTE/LTE-A networks. IEEE Communications Surveys Tutorials, 16(4), 2142–2180.

    Article  Google Scholar 

  31. 31.

    3GPP TR 36.814 V9.0.0, 03 2010.

  32. 32.

    Yasir, B., Su, G., & Bachache, N. (2012). Range expansion for pico cell in heterogeneous lte x2014; a cellular networks. In Proceedings of the 2nd international conference on computer science and network technology (ICCSNT), 2012 (pp. 1235–1240).

  33. 33.

    Mikami, M., Miyashita, M., & Yoshino, H. (2015). A cell identification performance improvement in co-channel heterogeneous cellular networks with cell range expansion. In Vehicular technology conference (VTC Spring), 2015 IEEE 81st (pp. 1–5).

  34. 34.

    TR 36.842 Study on Small Cell enhancements for E-UTRA and E-UTRAN; Higher layer aspects (Release 12).

  35. 35.

    Iwamura, M., Etemad, K., Fong, M.-H., Nory, R., & Love, R. (2010). Carrier aggregation framework in 3GPP LTE-advanced [WiMAX/LTE update]. IEEE Communications Magazine, 48(8), 60–67.

    Article  Google Scholar 

  36. 36.

    Shen, Z., Papasakellariou, A., Montojo, J., Gerstenberger, D., & Xu, F. (2012). Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications. IEEE Communications Magazine, 50(2), 122–130.

    Article  Google Scholar 

  37. 37.

    Pedersen, K., Frederiksen, F., Rosa, C., Nguyen, H., Garcia, L., & Wang, Y. (2011). Carrier aggregation for LTE-advanced: Functionality and performance aspects. IEEE Communications Magazine, 49(6), 89–95.

    Article  Google Scholar 

  38. 38.

    Yuan, G., Zhang, X., Wang, W., & Yang, Y. (2010). Carrier aggregation for LTE-advanced mobile communication systems. IEEE Communications Magazine, 48(2), 88–93.

    Article  Google Scholar 

  39. 39.

    Lee, J., Kim, Y., Lee, H., Ng, B. L., Mazzarese, D., Liu, J., et al. (2012). Coordinated multipoint transmission and reception in LTE-advanced systems. IEEE Communications Magazine, 50(11), 44–50.

    Article  Google Scholar 

  40. 40.

    Lee, D., Seo, H., Clerckx, B., Hardouin, E., Mazzarese, D., Nagata, S., et al. (2012). Coordinated multipoint transmission and reception in LTE-advanced: Deployment scenarios and operational challenges. IEEE Communications Magazine, 50(2), 148–155.

    Article  Google Scholar 

  41. 41.

    Li, Y. N. R., Li, J., Li, W., Xue, Y., & Wu, H. (2012). CoMP and interference coordination in heterogeneous network for LTE-advanced. In Globecom Workshops (GC Wkshps), 2012 IEEE (pp. 1107–1111).

  42. 42.

    3GPP TR 22.803, Feasibility study for Proximity Services (ProSe) (Release 12), v. 12.2.0, June 2012.

  43. 43.

    3GPP TR 23.703, Study on architecture enhancements to support proximity services (ProSe) (Release 12), v. 1.0.0, Dec 2013.

  44. 44.

    Ciochina, C., & Sari, H. (2010). A review of OFDMA and single-carrier FDMA. In Wireless conference (EW), 2010 European (pp. 706–710).

  45. 45.

    Fettweis, G., Krondorf, M., & Bittner, S. (2009). GFDM: Generalized frequency division multiplexing. In IEEE 69th vehicular technology conference, 2009. VTC Spring 2009 (pp. 1–4).

  46. 46.

    Andrews, J., Buzzi, S., Choi, W., Hanly, S., Lozano, A., Soong, A., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  47. 47.

    Benvenuto, N., Dinis, R., Falconer, D., & Tomasin, S. (2010). Single carrier modulation with nonlinear frequency domain equalization: An idea whose time has come—again. Proceedings of the IEEE, 98(1), 69–96.

    Article  Google Scholar 

  48. 48.

    Huang, J., Zhang, H., Xu, W., & Zhang, H. (2013). Grouping based inter-cell interference coordination in LTE-A dense small-cell networks. In Proceedings of the IEEE 5th international symposium on microwave, antenna, propagation and EMC technologies for wireless communications (MAPE), 2013 (pp. 78–83).

  49. 49.

    Mahmoud, H., & Guvenc, I. (2009). A comparative study of different deployment modes for femtocell networks. In Proceedings of the 20th international symposium on personal, indoor and mobile radio communications, 2009 IEEE (pp. 1–5).

  50. 50.

    Study on signaling and procedure for interference avoidance for in-device coexistence (release 11). 3GPP TR 36.816 June 2012.

  51. 51.

    Saker, L., Elayoubi, S., Chahed, T., & Gati, A. (2012). Energy efficiency and capacity of heterogeneous network deployment in LTE-advanced. In Proceedings of the 18th European wireless conference European wireless, 2012. EW (pp. 1–7).

  52. 52.

    Soh, Y. S., Quek, T., Kountouris, M., & Shin, H. (2013). Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 31(5), 840–850.

    Article  Google Scholar 

  53. 53.

    Zhu, Y., Zeng, Z., Zhang, T., An, L., & Xiao, L. (2014). An energy efficient user association scheme based on cell sleeping in LTE heterogeneous networks. In International symposium on wireless personal multimedia communications (WPMC), 2014 (pp. 75–79).

  54. 54.

    Mesodiakaki, A., Adelantado, F., Alonso, L., & Verikoukis, C. (2014). Energy-efficient context-aware user association for outdoor small cell heterogeneous networks. In Proceedings of the IEEE international conference on communications (ICC), 2014 (pp. 1614–1619).

  55. 55.

    Han, K., Liu, D., Chen, Y., & Chai, K. K. (2014). Energy-efficient user association in HetNets: An evolutionary game approach. In Proceedings of the IEEE fourth international conference on big data and cloud computing (BdCloud), 2014 (pp. 648–653).

  56. 56.

    Rao, J., & Fapojuwo, A. (2014). A survey of energy efficient resource management techniques for multicell cellular networks. IEEE Communications Surveys Tutorials, 16(1), 154–180.

    Article  Google Scholar 

  57. 57.

    Kosta, C., Hunt, B., Quddus, A., & Tafazolli, R. (2013). Distributed energy-efficient inter-cell interference coordination (ICIC) in multi-cell hetnets. In Vehicular technology conference (VTC Spring), 2013 IEEE 77th (pp. 1–5).

  58. 58.

    Mesodiakaki, A., Adelantado, F., Antonopoulos, A., Kartsakli, E., Alonso, L., & Verikoukis, C. (2014). Energy impact of outdoor small cell backhaul in green heterogeneous networks. In Proceedings of the 2014 IEEE 19th international workshop on computer aided modeling and design of communication links and networks (CAMAD) (pp. 11–15).

  59. 59.

    Mahloo, M., Monti, P., Chen, J., & Wosinska, L. (2014). Cost modeling of backhaul for mobile networks. In Proceedings of the IEEE international conference on communications workshops (ICC), 2014 (pp. 397–402).

  60. 60.

    Peng, M., Li, Y., Jiang, J., Li, J., & Wang, C. (2014). Heterogeneous cloud radio access networks: A new perspective for enhancing spectral and energy efficiencies. IEEE Wireless Communications, 21(6), 126–135.

    Article  Google Scholar 

  61. 61.

    Gelabert, X., Zhou, G., & Legg, P. (2013). Mobility performance and suitability of macro cell power-off in LTE dense small cell hetnets. In Proceedings of the IEEE 18th international workshop on computer aided modeling and design of communication links and networks (CAMAD), 2013 (pp. 99–103).

  62. 62.

    Hwang, I., Song, B., & Soliman, S. (2013). A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 51(6), 20–27.

    Article  Google Scholar 

  63. 63.

    Xenakis, D., Passas, N., Merakos, L., & Verikoukis, C. (2014). Mobility management for femtocells in LTE-advanced: Key aspects and survey of handover decision algorithms. IEEE Communications Surveys Tutorials, 16(1), 64–91.

    Article  Google Scholar 

  64. 64.

    Rappaport, T. S. (1996). Wireless communications: Principles and practice. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  65. 65.

    3GPP TR R1-050 507, Soft frequency reuse scheme for UTRAN LTE, May 2005.

  66. 66.

    Sternad, M., Ottosson, T., Ahlen, A., & Svensson, A. (2003). Attaining both coverage and high spectral efficiency with adaptive ofdm downlinks. In Vehicular technology conference, 2003. VTC 2003-Fall. 2003 IEEE 58th (Vol. 4, pp. 2486–2490).

  67. 67.

    Simonsson, A. (2007). Frequency reuse and intercell interference co-ordination in E-UTRA. In Vehicular technology conference, 2007. VTC2007-Spring. IEEE 65th (pp. 3091–3095).

  68. 68.

    3GPP TR R1-072 762, Further discussion on adaptive fractional frequency reuse. June 2007.

  69. 69.

    Mao, X., Maaref, A., & Teo, K. H. (2008). Adaptive soft frequency reuse for inter-cell interference coordination in SC-FDMA based 3GPP LTE uplinks. In Global telecommunications conference, 2008. IEEE GLOBECOM 2008. IEEE (pp. 1–6).

  70. 70.

    Zhang, X., He, C., Jiang, L., & Xu, J. (2008). Inter-cell interference coordination based on softer frequency reuse in OFDMA cellular systems. In Proceedings of the 2008 international conference on neural networks and signal processing (pp. 270–275).

  71. 71.

    Ali, S., & Leung, V. (2009). Dynamic frequency allocation in fractional frequency reused ofdma networks. IEEE Transactions on Wireless Communications, 8(8), 4286–4295.

    Article  Google Scholar 

  72. 72.

    Himayat, N., Talwar, S., Rao, A., & Soni, R. (2010). Interference management for 4G cellular standards [WIMAX/LTE update]. IEEE Communications Magazine, 48(8), 86–92.

    Article  Google Scholar 

  73. 73.

    Tao, M., & Liu, Y. (2013). A network flow approach to throughput maximization in cooperative OFDMA networks. IEEE Transactions on Wireless Communications, 12(3), 1138–1148.

    Article  Google Scholar 

  74. 74.

    Zaki, A., & Fapojuwo, A. (2011). Optimal and efficient graph-based resource allocation algorithms for multiservice frame-based OFDMA networks. IEEE Transactions on Mobile Computing, 10(8), 1175–1186.

    Article  Google Scholar 

  75. 75.

    Li, G., & Liu, H. (2006). Downlink radio resource allocation for multi-cell OFDMA system. IEEE Transactions on Wireless Communications, 5(12), 3451–3459.

    Article  Google Scholar 

  76. 76.

    Liang, Z., Chew, Y., & Ko, C. C. (2008). A linear programming solution to subcarrier, bit and power allocation for multicell ofdma systems. In Wireless communications and networking conference, 2008. WCNC 2008. IEEE (pp. 1273–1278).

  77. 77.

    Rahman, M., & Yanikomeroglu, H. (2010). Enhancing cell-edge performance: A downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications, 9(4), 1414–1425.

    Article  Google Scholar 

  78. 78.

    Necker, M. (2008). Interference coordination in cellular ofdma networks. IEEE Network, 22(6), 12–19.

    Article  Google Scholar 

  79. 79.

    Chang, R., Tao, Z., Zhang, J., & Kuo, C.-C. (2009). Multicell OFDMA downlink resource allocation using a graphic framework. IEEE Transactions on Vehicular Technology, 58(7), 3494–3507.

    Article  Google Scholar 

  80. 80.

    Ellenbeck, J., Hartmann, C., & Berlemann, L. (2008). Decentralized inter-cell interference coordination by autonomous spectral reuse decisions. In Proceedings of the 14th European wireless conference, 2008. EW 2008 (pp. 1–7).

  81. 81.

    Meshkati, F., Poor, H., & Schwartz, S. (2007). Energy-efficient resource allocation in wireless networks. IEEE Signal Processing Magazine, 24(3), 58–68.

    Article  Google Scholar 

  82. 82.

    Soret, B., & Pedersen, K. (2015). Centralized and distributed solutions for fast muting adaptation in LTE-advanced HetNets. IEEE Transactions on Vehicular Technology, 64(1), 147–158.

    Article  Google Scholar 

  83. 83.

    Tran, T.-T., Shin, Y., & Shin, O.-S. (2012). Overview of enabling technologies for 3GPP LTE-advanced. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1–12.

    Article  Google Scholar 

  84. 84.

    3GPP TS 36.420, X2 General Aspects and Principles (Release 8), V8.0.0. Dec 2007.

  85. 85.

    Bharucha, Z., Saul, A., Auer, G., & Haas, H. (2010). Dynamic resource partitioning for downlink femto-to-macro-cell interference avoidance. EURASIP Journal on Wireless Communications and Networking, 2010, 2.

    Article  Google Scholar 

  86. 86.

    3GPP TR 36.423, X2 Application Protocol (X2AP) (Release 8), v8.2.0. June 2008.

  87. 87.

    Pauli, V., Naranjo, J. D., & Seidel, E. (2010). Heterogeneous LTE networks and inter-cell interference coordination. Nomor Research GmBH, 1–9.

  88. 88.

    3GPP R1-101369, LG Electronics, Considerations on interference coordination in heterogeneous networks, TSG-RAN WG1 Meeting no 60, San Francisco, USA. Feb 2010.

  89. 89.

    Kamel, M., & Elsayed, K. (2012). Performance evaluation of a coordinated time-domain EICIC framework based on ABSF in heterogeneous LTE-advanced networks. In Global communications conference (GLOBECOM), 2012 IEEE (pp. 5326–5331).

  90. 90.

    Xu, S., Han, J., & Chen, T. (2012). Enhanced inter-cell interference coordination in heterogeneous networks for LTE-advanced. In Vehicular technology conference (VTC Spring), 2012 IEEE 75th (pp. 1–5).

  91. 91.

    Kamel, M., & Elsayed, K. (2013). Enhanced ABSF offsetting with virtual arbitrary blanking rate for time domain EICIC in LTE-advanced. In Global communications conference (GLOBECOM), 2013 IEEE (pp. 4741–4746).

  92. 92.

    Li, Q., Xia, H., Zeng, Z., & Zhang, T. (2013). Dynamic enhanced inter-cell interference coordination using reinforcement learning approach in heterogeneous network. In Proceedings of the 15th IEEE international conference on communication technology (ICCT), 2013 (pp. 239–243).

  93. 93.

    Lopez-Perez, D., Guvenc, I., de la Roche, G., Kountouris, M., Quek, T., & Zhang, J. (2011). Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communications, 18(3), 22–30.

    Article  Google Scholar 

  94. 94.

    Liu, P., Li, J., Li, H., Wang, K., & Meng, Y. (2015). Two-dimensional resource pattern optimization for interference avoidance in heterogeneous networks. IEEE Transactions on Vehicular Technology, 64(8), 3536–3546.

    Article  Google Scholar 

  95. 95.

    Liu, P., Li, J., Li, H., & Meng, Y. (2014). Beyond EICIC-two-dimensional resource pattern optimization for macro-femto interference avoidance. In Proceedings of the 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC), 2014 IEEE (pp. 1180–1184).

  96. 96.

    3GPP R1-104968, Summary of the Description of Candidate eICIC Solutions, 3GPP Std., Madrid, Spain. Aug 2010.

  97. 97.

    Merwaday, A., Mukherjee, S., & Guvenc, I. (2014). Hetnet capacity with reduced power subframes. In Wireless communications and networking conference (WCNC), 2014 IEEE (pp. 1380–1385).

  98. 98.

    Huawei, R3-111969, Consideration on Transmission Power of ABSs, Athens, Greece. Aug 2011.

  99. 99.

    Jiang, H., Wang, H., Zhu, W., Li, Z., Pan, Z., Liu, N., You, X., & Yang, L. (2013). Carrier aggregation based interference coordination for LTE-A macro-pico HetNet. In Vehicular technology conference (VTC Spring), 2013 IEEE 77th (pp. 1–6).

  100. 100.

    Garcia, L., Pedersen, K., & Mogensen, P. (2009). Autonomous component carrier selection: Interference management in local area environments for LTE-advanced. IEEE Communications Magazine, 47(9), 110–116.

    Article  Google Scholar 

  101. 101.

    Sun, C., Jiang, J., Huang, L., & Lu, G. (2012). Component carrier selection and interference coordination for carrier aggregation system in heterogeneous networks. In Proceedings of the 14th international conference on communication technology (ICCT), 2012 IEEE (pp. 402–407).

  102. 102.

    Zheng, K., Hu, F., Lei, L., & Wang, W. (2010). Interference coordination between femtocells in LTE-advanced networks with carrier aggregation. In Proceedings of the 5th international ICST conference on communications and networking in China (CHINACOM), 2010 (pp. 1–5).

  103. 103.

    Qinjuan, Z., Lin, G., Can, S., Xudong, A., & Xiaochen, C. (2014). Joint power control and component carrier assignment scheme in heterogeneous network with carrier aggregation. IET Communications, 8(10), 1831–1836.

    Article  Google Scholar 

  104. 104.

    Xue, X., Zhao, J., & Qu, H. (2012). Inter-cell interference coordination scheme based on CoMP. In Proceedings of the 14th international conference on advanced communication technology (ICACT), 2012 (pp. 33–36).

  105. 105.

    Boujelben, M., Ben Rejeb, S., & Tabbane, S. (2014). A comparative study of interference coordination schemes for wireless mobile advanced systems. In The 2014 international symposium on networks, computers and communications (pp. 1–5).

  106. 106.

    Sun, S., Gao, Q., Peng, Y., Wang, Y., & Song, L. (2013). Interference management through CoMP in 3GPP LTE-advanced networks. IEEE Wireless Communications, 20(1), 59–66.

    Article  Google Scholar 

  107. 107.

    Cao, Y., Xia, H., & Feng, C. (2013). Evaluation of diverse cell range expansion strategies applying CoMP in heterogeneous network. In Proceedings of the 24th international symposium on personal indoor and mobile radio communications (PIMRC), 2013 IEEE (pp. 1962–1966).

  108. 108.

    Tall, A., Altman, Z., & Altman, E. (2014). Self organizing strategies for enhanced ICIC (EICIC). In Proceedings of the 12th international symposium on modeling and optimization in mobile, Ad Hoc, and wireless networks (WiOpt), 2014 (pp. 318–325).

  109. 109.

    Rengarajan, B., Stolyar, A., & Viswanathan, H. (2010). Self-organizing dynamic fractional frequency reuse on the uplink of OFDMA systems. In Proceedings of the 44th annual conference on information sciences and systems (CISS), 2010 (pp. 1–6).

  110. 110.

    Gerlach, C. G., Karla, I., Weber, A., Ewe, L., Bakker, H., Kuehn, E., et al. (2010). ICIC in DL and UL with network distributed and self-organized resource assignment algorithms in LTE. Bell Labs Technical Journal, 15(3), 43–62.

    Article  Google Scholar 

  111. 111.

    Shokri-Ghadikolaei, H., Fischione, C., Fodor, G., Popovski, P., & Zorzi, M. (2015). Millimeter wave cellular networks: A MAC layer perspective. IEEE Transactions on Communications, 63(10), 3437–3458.

    Article  Google Scholar 

  112. 112.

    Lopez-Perez, D., Valcarce, A., de la Roche, G., & Zhang, J. (2009). OFDMA femtocells: A roadmap on interference avoidance. IEEE Communications Magazine, 47(9), 41–48.

    Article  Google Scholar 

  113. 113.

    Shokri-Ghadikolaei, H., Fischione, C., Popovski, P., & Zorzi, M. (2016). Design aspects of short-range millimeter-wave networks: A MAC layer perspective. IEEE Network, 30(3), 88–96.

    Article  Google Scholar 

  114. 114.

    Shokri-Ghadikolaei, H., Gkatzikis, L., & Fischione, C. (2015). Beam-searching and transmission scheduling in millimeter wave communications. In 2015 IEEE international conference on communications (ICC) (pp. 1292–1297).

  115. 115.

    Think Small cells.

  116. 116.

    Golrezaei, N., Shanmugam, K., Dimakis, A., Molisch, A., & Caire, G. (2012). Femtocaching: Wireless video content delivery through distributed caching helpers. In INFOCOM, 2012 Proceedings IEEE (pp. 1107–1115).

  117. 117.

    Peng, M., Li, Y., Zhao, Z., & Wang, C. (2015). System architecture and key technologies for 5G heterogeneous cloud radio access networks. IEEE Network, 29(2), 6–14.

    Article  Google Scholar 

  118. 118.

    Monica Paolini, S. F. Fronthaul or backhaul for micro cells? A TCO comparison between two approaches to managing traffic from macro and micro cells in HetNets. White Paper.

  119. 119.

    Pizzinat, A., Chanclou, P., Saliou, F., & Diallo, T. (2015). Things you should know about fronthaul. Journal of Lightwave Technology, 33(5), 1077–1083.

    Article  Google Scholar 

  120. 120.

    Breuer, D., Weis, E., Krauss, S., Belschner, J., & Geilhardt, F. (2015). Assessment of future backhaul and fronthaul networks for HetNet architectures. In Proceedings of the 17th international conference on transparent optical networks (ICTON), 2015 (pp. 1–2).

  121. 121.

    Antonopoulos, A., Kartsakli, E., Bousia, A., Alonso, L., & Verikoukis, C. (2015). Energy-efficient infrastructure sharing in multi-operator mobile networks. IEEE Communications Magazine, 53(5), 242–249.

    Article  Google Scholar 

  122. 122.

    Bousia, A., Kartsakli, E., Antonopoulos, A., Alonso, L., & Verikoukis, C. (2016). Game-theoretic infrastructure sharing in multioperator cellular networks. IEEE Transactions on Vehicular Technology, 65(5), 3326–3341.

    Article  Google Scholar 

  123. 123.

    Lin, P., Zhang, J., Chen, Y., & Zhang, Q. (2011). Macro-femto heterogeneous network deployment and management: From business models to technical solutions. IEEE Wireless Communications, 18(3), 64–70.

    Article  Google Scholar 

  124. 124.

    Chandrasekhar, V., Andrews, J., Muharemovict, T., Shen, Z., & Gatherer, A. (2009). Power control in two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(8), 4316–4328.

    Article  Google Scholar 

  125. 125.

    Ikuno, J., Wrulich, M., & Rupp, M. (2010) System level simulation of LTE networks. In Vehicular technology conference (VTC 2010-Spring), 2010 IEEE 71st (pp. 1–5).

Download references

Author information



Corresponding author

Correspondence to Mudassar Ali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Mumtaz, S., Qaisar, S. et al. Smart heterogeneous networks: a 5G paradigm. Telecommun Syst 66, 311–330 (2017).

Download citation


  • LTE-A
  • ICIC
  • 5G
  • HetNets