Advertisement

Telecommunication Systems

, Volume 66, Issue 2, pp 311–330 | Cite as

Smart heterogeneous networks: a 5G paradigm

  • Mudassar Ali
  • Shahid Mumtaz
  • Saad Qaisar
  • Muhammad Naeem
Article

Abstract

An exponential growth in data demand on wireless networks and wireless link capacity approaching its theoretical limits, bound us to find new solutions and innovative network designs to handle the enormous amount of traffic. In this paper, we discuss long term evolution-advance (LTE-A) heterogeneous networks (HetNets) being a most effective solution to break this wireless cellular capacity crunch. LTE-A HetNets provide adequate increase in capacity by utilizing multi-tier architecture consisting of different type of cells i.e macro cell, small cell, relay and device to device. However this increase in capacity comes with certain challenges in HetNets outlined in this article. Considering inter cell interference coordination (ICIC) as biggest challenge in LTE-A HetNets, this article surveys state of the art LTE-A HetNets deployments with focus on ICIC. Effective ICIC techniques allow further substantial capacity increase. We give state of the art ICIC on air-interface as well as backhaul strategies for effective ICIC in LTE-A HetNets. Operators perspective of LTE-A HetNets with some insight to future of 5G LTE-A HetNets is provided. We also provide simulation results to show how LTE-A HetNets lead to realize ambitious targets of 5G technology in terms of capacity.

Keywords

LTE-A ICIC 5G HetNets OFDMA 

Abbreviations

3GPP

Third generation partnership project

5G

Fith generation

ABSF

Almost blank sub-frame

AFR

Adaptive frequency reuse

AP

Access point

BER

Bit error rate

BS

Base station

CA

Carrier aggregation

CAPEX

Capital expenditure

CC

Component carrier

CoMP

Coordinated multi-point

CRAN

Cloud radio access network

CRE

Cell range expansion

CRN

Cognitive radio networks

CS/CB

Coordinated scheduling and coordinated beam forming

CSG

Closed subscriber group

CSI

Channel state information

D2D

Device to device communication

DLHII

Downlink high interference indicator

DPS

Dynamic point selection

DSL

Digital subscriber line

E2E

End to end

EE

Energy efficiency

eNB

Evolved node B

FDD

Frequency division duplex

FFR

Fractional frequency reuse

FFT

Fast fourier transform

GFDM

Generalized frequency division multiple access

HD

High definition

HeNB

Home eNB

HetNet

Heterogenous network

HII

High interference indicator

IAI

Inter antenna interference

ICI

Inter channel interference

ICIC

Inter cell interference coordination

IFFT

Inverse fast fourier transform

IOI

Interference overload indicator

JP

Joint processing

JT

Joint transmission

KPI

Key performance indicator

LED

Light-emitting diode

LOS

Line of sight

LTE-A

Long term evolution-advance

MAC

Medium access control

MCNF

Minimum cost network flow

MIMO

Multiple input multiple output

mmWave

Millimeter wave

NG-PON

Next generation passive optical networks

NOMA

Non orthogonal multiple access

OFDM

Orthogonal frequency division multiple access

OFP

Orthogonal frequency partitioning

OPEX

Operational expenditure

OSG

Open subscriber group

PAPR

Peak to average power ratio

PCC

Primary component carrier

PDCCH

Physical downlink control channel

PDSCH

Physical downlink shared channel

PFR

Partial frequency reuse

QoS

Quality of service

RB

Resource block

Rel.

Release

RN

Relay node

RNTP

Relative narrow-band transmit power

RRH

Remote radio head

RTT

Round trip time

SCC

Secondary component carrier

SDR

Software defined radio

SE

Spectral efficiency

SFR

Soft frequency reuse

SINR

Single to interference and noise ratio

SM

Spatial modulation

TTI

Transmission time interval

UE

User equipment

VLC

Visible light communication

References

  1. 1.
    Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.CrossRefGoogle Scholar
  2. 2.
    Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2015). System-level performance of downlink non-orthogonal multiple access (noma) under various environments. In Vehicular technology conference (VTC Spring), 2015 IEEE 81st (pp. 1–5).Google Scholar
  3. 3.
    Aydin, O., Aziz, D., & Jorswieck, E. (2014). Radio resource sharing among operators through mimo based spatial multiplexing in 5G systems. In Globecom Workshops (GC Wkshps), 2014 (pp. 1063–1068).Google Scholar
  4. 4.
    Nair, K. V., & Prabhu, P. R. (2014). A comparative study on multiple active spatial modulation in mimo systems. In Proceedings of the international conference on control, instrumentation, communication and computational technologies (ICCICCT), 2014 (pp. 457–460).Google Scholar
  5. 5.
    Renzo, M. D., Haas, H., Ghrayeb, A., Sugiura, S., & Hanzo, L. (2014). Spatial modulation for generalized mimo: Challenges, opportunities, and implementation. Proceedings of the IEEE, 102(1), 56–103.CrossRefGoogle Scholar
  6. 6.
    Gao, Z., Dai, L., Mi, D., Wang, Z., Imran, M., & Shakir, M. (2015). Mmwave massive-mimo-based wireless backhaul for the 5G ultra-dense network. IEEE Wireless Communications, 22(5), 13–21.CrossRefGoogle Scholar
  7. 7.
    Rappaport, T., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.CrossRefGoogle Scholar
  8. 8.
    Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.CrossRefGoogle Scholar
  9. 9.
    Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.CrossRefGoogle Scholar
  10. 10.
    Muttagi, S., Biradar, S., & Kushnure, D. (2015). 5G: A digital society. In Proceedings of the international conference on electrical, electronics, signals, communication and optimization (EESCO), 2015 (pp. 1–5).Google Scholar
  11. 11.
    Wu, S., Wang, H., & Youn, C. H. (2014). Visible light communications for 5G wireless networking systems: From fixed to mobile communications. IEEE Network, 28(6), 41–45.CrossRefGoogle Scholar
  12. 12.
    Panzner, B., Zirwas, W., Dierks, S., Lauridsen, M., Mogensen, P., Pajukoski, K., & Miao, D. (2014). Deployment and implementation strategies for massive mimo in 5G. In Globecom Workshops (GC Wkshps), 2014 (pp. 346–351).Google Scholar
  13. 13.
    Qiao, D., Wu, Y., & Chen, Y. (2014). Massive mimo architecture for 5G networks: Co-located, or distributed? In Proceedings of the 11th international symposium on wireless communications systems (ISWCS), 2014 (pp. 192–197).Google Scholar
  14. 14.
    Ding, G., Wang, J., Wu, Q., dong Yao, Y., Li, R., Zhang, H., et al. (2015). On the limits of predictability in real-world radio spectrum state dynamics: From entropy theory to 5G spectrum sharing. IEEE Communications Magazine, 53(7), 178–183.CrossRefGoogle Scholar
  15. 15.
    Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J., & Khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys and Tutorials, 18(1), 795–823.CrossRefGoogle Scholar
  16. 16.
    Mesodiakaki, A., Adelantado, F., Alonso, L., & Verikoukis, C. (2015). Performance analysis of a cognitive radio contention-aware channel selection algorithm. IEEE Transactions on Vehicular Technology, 64(5), 1958–1972.CrossRefGoogle Scholar
  17. 17.
    Galinina, O., Pyattaev, A., Andreev, S., Dohler, M., & Koucheryavy, Y. (2015). 5G multi-RAT LTE-WiFi ultra-dense small cells: Performance dynamics, architecture, and trends. IEEE Journal on Selected Areas in Communications, 33(6), 1224–1240.CrossRefGoogle Scholar
  18. 18.
    Hachem, J., Karamchandani, N., & Diggavi, S. (2015). Content caching and delivery over heterogeneous wireless networks. In Proceedings of the IEEE conference on computer communications (INFOCOM), 2015 (pp. 756–764).Google Scholar
  19. 19.
    Jiang, L., Feng, G., & Qin, S. (2015). Cooperative content distribution for 5G systems based on distributed cloud service network. In Proceedings of the IEEE international conference on communication workshop (ICCW), 2015 (pp. 1125–1130).Google Scholar
  20. 20.
    Gupta, A., & Jha, R. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRefGoogle Scholar
  21. 21.
    Davaslioglu, K., & Gitlin, R. D. (2016). 5G green networking: Enabling technologies, potentials, and challenges. In Proceedings of the IEEE 17th annual wireless and microwave technology conference (WAMICON), 2016 (pp. 1–6).Google Scholar
  22. 22.
    Zhang, S., Wu, Q., Xu, S., & Li, G. (2016). Fundamental green tradeoffs: Progresses, challenges, and impacts on 5G networks. IEEE Communications Surveys Tutorials, 99, 1.Google Scholar
  23. 23.
    Olsson, M., Cavdar, C., Frenger, P., Tombaz, S., Sabella, D., & Jantti, R. (2013). 5green: Towards green 5G mobile networks. In Proceedings of the IEEE 9th international conference on wireless and mobile computing, networking and communications (WiMob), 2013 (pp. 212–216).Google Scholar
  24. 24.
    Saidul Huq, K., Mumtaz, S., Bachmatiuk, J., Rodriguez, J., Wang, X., & Aguiar, R. (2015). Green HetNet CoMP: Energy efficiency analysis and optimization. IEEE Transactions on Vehicular Technology, 64(10), 4670–4683.CrossRefGoogle Scholar
  25. 25.
    Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.CrossRefGoogle Scholar
  26. 26.
    Alouini, M.-S., & Goldsmith, A. (1999). Area spectral efficiency of cellular mobile radio systems. IEEE Transactions on Vehicular Technology, 48(4), 1047–1066.CrossRefGoogle Scholar
  27. 27.
    Hamza, A. S., Khalifa, S. S., Hamza, H. S., & Elsayed, K. (2013). A survey on inter-cell interference coordination techniques in ofdma-based cellular networks. IEEE Communications Surveys Tutorials, 15(4), 1642–1670.CrossRefGoogle Scholar
  28. 28.
    Kosta, C., Hunt, B., Quddus, A. U., & Tafazolli, R. (2013). On interference avoidance through inter-cell interference coordination (ICIC) based on OFDMA mobile systems. IEEE Communications Surveys Tutorials, 15(3), 973–995.CrossRefGoogle Scholar
  29. 29.
    Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.CrossRefGoogle Scholar
  30. 30.
    Lee, Y. L., Chuah, T. C., Loo, J., & Vinel, A. (2014). Recent advances in radio resource management for heterogeneous LTE/LTE-A networks. IEEE Communications Surveys Tutorials, 16(4), 2142–2180.CrossRefGoogle Scholar
  31. 31.
    3GPP TR 36.814 V9.0.0, 03 2010.Google Scholar
  32. 32.
    Yasir, B., Su, G., & Bachache, N. (2012). Range expansion for pico cell in heterogeneous lte x2014; a cellular networks. In Proceedings of the 2nd international conference on computer science and network technology (ICCSNT), 2012 (pp. 1235–1240).Google Scholar
  33. 33.
    Mikami, M., Miyashita, M., & Yoshino, H. (2015). A cell identification performance improvement in co-channel heterogeneous cellular networks with cell range expansion. In Vehicular technology conference (VTC Spring), 2015 IEEE 81st (pp. 1–5).Google Scholar
  34. 34.
    TR 36.842 Study on Small Cell enhancements for E-UTRA and E-UTRAN; Higher layer aspects (Release 12).Google Scholar
  35. 35.
    Iwamura, M., Etemad, K., Fong, M.-H., Nory, R., & Love, R. (2010). Carrier aggregation framework in 3GPP LTE-advanced [WiMAX/LTE update]. IEEE Communications Magazine, 48(8), 60–67.CrossRefGoogle Scholar
  36. 36.
    Shen, Z., Papasakellariou, A., Montojo, J., Gerstenberger, D., & Xu, F. (2012). Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications. IEEE Communications Magazine, 50(2), 122–130.CrossRefGoogle Scholar
  37. 37.
    Pedersen, K., Frederiksen, F., Rosa, C., Nguyen, H., Garcia, L., & Wang, Y. (2011). Carrier aggregation for LTE-advanced: Functionality and performance aspects. IEEE Communications Magazine, 49(6), 89–95.CrossRefGoogle Scholar
  38. 38.
    Yuan, G., Zhang, X., Wang, W., & Yang, Y. (2010). Carrier aggregation for LTE-advanced mobile communication systems. IEEE Communications Magazine, 48(2), 88–93.CrossRefGoogle Scholar
  39. 39.
    Lee, J., Kim, Y., Lee, H., Ng, B. L., Mazzarese, D., Liu, J., et al. (2012). Coordinated multipoint transmission and reception in LTE-advanced systems. IEEE Communications Magazine, 50(11), 44–50.CrossRefGoogle Scholar
  40. 40.
    Lee, D., Seo, H., Clerckx, B., Hardouin, E., Mazzarese, D., Nagata, S., et al. (2012). Coordinated multipoint transmission and reception in LTE-advanced: Deployment scenarios and operational challenges. IEEE Communications Magazine, 50(2), 148–155.CrossRefGoogle Scholar
  41. 41.
    Li, Y. N. R., Li, J., Li, W., Xue, Y., & Wu, H. (2012). CoMP and interference coordination in heterogeneous network for LTE-advanced. In Globecom Workshops (GC Wkshps), 2012 IEEE (pp. 1107–1111).Google Scholar
  42. 42.
    3GPP TR 22.803, Feasibility study for Proximity Services (ProSe) (Release 12), v. 12.2.0, June 2012.Google Scholar
  43. 43.
    3GPP TR 23.703, Study on architecture enhancements to support proximity services (ProSe) (Release 12), v. 1.0.0, Dec 2013.Google Scholar
  44. 44.
    Ciochina, C., & Sari, H. (2010). A review of OFDMA and single-carrier FDMA. In Wireless conference (EW), 2010 European (pp. 706–710).Google Scholar
  45. 45.
    Fettweis, G., Krondorf, M., & Bittner, S. (2009). GFDM: Generalized frequency division multiplexing. In IEEE 69th vehicular technology conference, 2009. VTC Spring 2009 (pp. 1–4).Google Scholar
  46. 46.
    Andrews, J., Buzzi, S., Choi, W., Hanly, S., Lozano, A., Soong, A., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRefGoogle Scholar
  47. 47.
    Benvenuto, N., Dinis, R., Falconer, D., & Tomasin, S. (2010). Single carrier modulation with nonlinear frequency domain equalization: An idea whose time has come—again. Proceedings of the IEEE, 98(1), 69–96.CrossRefGoogle Scholar
  48. 48.
    Huang, J., Zhang, H., Xu, W., & Zhang, H. (2013). Grouping based inter-cell interference coordination in LTE-A dense small-cell networks. In Proceedings of the IEEE 5th international symposium on microwave, antenna, propagation and EMC technologies for wireless communications (MAPE), 2013 (pp. 78–83).Google Scholar
  49. 49.
    Mahmoud, H., & Guvenc, I. (2009). A comparative study of different deployment modes for femtocell networks. In Proceedings of the 20th international symposium on personal, indoor and mobile radio communications, 2009 IEEE (pp. 1–5).Google Scholar
  50. 50.
    Study on signaling and procedure for interference avoidance for in-device coexistence (release 11). 3GPP TR 36.816 June 2012.Google Scholar
  51. 51.
    Saker, L., Elayoubi, S., Chahed, T., & Gati, A. (2012). Energy efficiency and capacity of heterogeneous network deployment in LTE-advanced. In Proceedings of the 18th European wireless conference European wireless, 2012. EW (pp. 1–7).Google Scholar
  52. 52.
    Soh, Y. S., Quek, T., Kountouris, M., & Shin, H. (2013). Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 31(5), 840–850.CrossRefGoogle Scholar
  53. 53.
    Zhu, Y., Zeng, Z., Zhang, T., An, L., & Xiao, L. (2014). An energy efficient user association scheme based on cell sleeping in LTE heterogeneous networks. In International symposium on wireless personal multimedia communications (WPMC), 2014 (pp. 75–79).Google Scholar
  54. 54.
    Mesodiakaki, A., Adelantado, F., Alonso, L., & Verikoukis, C. (2014). Energy-efficient context-aware user association for outdoor small cell heterogeneous networks. In Proceedings of the IEEE international conference on communications (ICC), 2014 (pp. 1614–1619).Google Scholar
  55. 55.
    Han, K., Liu, D., Chen, Y., & Chai, K. K. (2014). Energy-efficient user association in HetNets: An evolutionary game approach. In Proceedings of the IEEE fourth international conference on big data and cloud computing (BdCloud), 2014 (pp. 648–653).Google Scholar
  56. 56.
    Rao, J., & Fapojuwo, A. (2014). A survey of energy efficient resource management techniques for multicell cellular networks. IEEE Communications Surveys Tutorials, 16(1), 154–180.CrossRefGoogle Scholar
  57. 57.
    Kosta, C., Hunt, B., Quddus, A., & Tafazolli, R. (2013). Distributed energy-efficient inter-cell interference coordination (ICIC) in multi-cell hetnets. In Vehicular technology conference (VTC Spring), 2013 IEEE 77th (pp. 1–5).Google Scholar
  58. 58.
    Mesodiakaki, A., Adelantado, F., Antonopoulos, A., Kartsakli, E., Alonso, L., & Verikoukis, C. (2014). Energy impact of outdoor small cell backhaul in green heterogeneous networks. In Proceedings of the 2014 IEEE 19th international workshop on computer aided modeling and design of communication links and networks (CAMAD) (pp. 11–15).Google Scholar
  59. 59.
    Mahloo, M., Monti, P., Chen, J., & Wosinska, L. (2014). Cost modeling of backhaul for mobile networks. In Proceedings of the IEEE international conference on communications workshops (ICC), 2014 (pp. 397–402).Google Scholar
  60. 60.
    Peng, M., Li, Y., Jiang, J., Li, J., & Wang, C. (2014). Heterogeneous cloud radio access networks: A new perspective for enhancing spectral and energy efficiencies. IEEE Wireless Communications, 21(6), 126–135.CrossRefGoogle Scholar
  61. 61.
    Gelabert, X., Zhou, G., & Legg, P. (2013). Mobility performance and suitability of macro cell power-off in LTE dense small cell hetnets. In Proceedings of the IEEE 18th international workshop on computer aided modeling and design of communication links and networks (CAMAD), 2013 (pp. 99–103).Google Scholar
  62. 62.
    Hwang, I., Song, B., & Soliman, S. (2013). A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 51(6), 20–27.CrossRefGoogle Scholar
  63. 63.
    Xenakis, D., Passas, N., Merakos, L., & Verikoukis, C. (2014). Mobility management for femtocells in LTE-advanced: Key aspects and survey of handover decision algorithms. IEEE Communications Surveys Tutorials, 16(1), 64–91.CrossRefGoogle Scholar
  64. 64.
    Rappaport, T. S. (1996). Wireless communications: Principles and practice. Upper Saddle River: Prentice-Hall.Google Scholar
  65. 65.
    3GPP TR R1-050 507, Soft frequency reuse scheme for UTRAN LTE, May 2005.Google Scholar
  66. 66.
    Sternad, M., Ottosson, T., Ahlen, A., & Svensson, A. (2003). Attaining both coverage and high spectral efficiency with adaptive ofdm downlinks. In Vehicular technology conference, 2003. VTC 2003-Fall. 2003 IEEE 58th (Vol. 4, pp. 2486–2490).Google Scholar
  67. 67.
    Simonsson, A. (2007). Frequency reuse and intercell interference co-ordination in E-UTRA. In Vehicular technology conference, 2007. VTC2007-Spring. IEEE 65th (pp. 3091–3095).Google Scholar
  68. 68.
    3GPP TR R1-072 762, Further discussion on adaptive fractional frequency reuse. June 2007.Google Scholar
  69. 69.
    Mao, X., Maaref, A., & Teo, K. H. (2008). Adaptive soft frequency reuse for inter-cell interference coordination in SC-FDMA based 3GPP LTE uplinks. In Global telecommunications conference, 2008. IEEE GLOBECOM 2008. IEEE (pp. 1–6).Google Scholar
  70. 70.
    Zhang, X., He, C., Jiang, L., & Xu, J. (2008). Inter-cell interference coordination based on softer frequency reuse in OFDMA cellular systems. In Proceedings of the 2008 international conference on neural networks and signal processing (pp. 270–275).Google Scholar
  71. 71.
    Ali, S., & Leung, V. (2009). Dynamic frequency allocation in fractional frequency reused ofdma networks. IEEE Transactions on Wireless Communications, 8(8), 4286–4295.CrossRefGoogle Scholar
  72. 72.
    Himayat, N., Talwar, S., Rao, A., & Soni, R. (2010). Interference management for 4G cellular standards [WIMAX/LTE update]. IEEE Communications Magazine, 48(8), 86–92.CrossRefGoogle Scholar
  73. 73.
    Tao, M., & Liu, Y. (2013). A network flow approach to throughput maximization in cooperative OFDMA networks. IEEE Transactions on Wireless Communications, 12(3), 1138–1148.CrossRefGoogle Scholar
  74. 74.
    Zaki, A., & Fapojuwo, A. (2011). Optimal and efficient graph-based resource allocation algorithms for multiservice frame-based OFDMA networks. IEEE Transactions on Mobile Computing, 10(8), 1175–1186.CrossRefGoogle Scholar
  75. 75.
    Li, G., & Liu, H. (2006). Downlink radio resource allocation for multi-cell OFDMA system. IEEE Transactions on Wireless Communications, 5(12), 3451–3459.CrossRefGoogle Scholar
  76. 76.
    Liang, Z., Chew, Y., & Ko, C. C. (2008). A linear programming solution to subcarrier, bit and power allocation for multicell ofdma systems. In Wireless communications and networking conference, 2008. WCNC 2008. IEEE (pp. 1273–1278).Google Scholar
  77. 77.
    Rahman, M., & Yanikomeroglu, H. (2010). Enhancing cell-edge performance: A downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications, 9(4), 1414–1425.CrossRefGoogle Scholar
  78. 78.
    Necker, M. (2008). Interference coordination in cellular ofdma networks. IEEE Network, 22(6), 12–19.CrossRefGoogle Scholar
  79. 79.
    Chang, R., Tao, Z., Zhang, J., & Kuo, C.-C. (2009). Multicell OFDMA downlink resource allocation using a graphic framework. IEEE Transactions on Vehicular Technology, 58(7), 3494–3507.CrossRefGoogle Scholar
  80. 80.
    Ellenbeck, J., Hartmann, C., & Berlemann, L. (2008). Decentralized inter-cell interference coordination by autonomous spectral reuse decisions. In Proceedings of the 14th European wireless conference, 2008. EW 2008 (pp. 1–7).Google Scholar
  81. 81.
    Meshkati, F., Poor, H., & Schwartz, S. (2007). Energy-efficient resource allocation in wireless networks. IEEE Signal Processing Magazine, 24(3), 58–68.CrossRefGoogle Scholar
  82. 82.
    Soret, B., & Pedersen, K. (2015). Centralized and distributed solutions for fast muting adaptation in LTE-advanced HetNets. IEEE Transactions on Vehicular Technology, 64(1), 147–158.CrossRefGoogle Scholar
  83. 83.
    Tran, T.-T., Shin, Y., & Shin, O.-S. (2012). Overview of enabling technologies for 3GPP LTE-advanced. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1–12.CrossRefGoogle Scholar
  84. 84.
    3GPP TS 36.420, X2 General Aspects and Principles (Release 8), V8.0.0. Dec 2007.Google Scholar
  85. 85.
    Bharucha, Z., Saul, A., Auer, G., & Haas, H. (2010). Dynamic resource partitioning for downlink femto-to-macro-cell interference avoidance. EURASIP Journal on Wireless Communications and Networking, 2010, 2.CrossRefGoogle Scholar
  86. 86.
    3GPP TR 36.423, X2 Application Protocol (X2AP) (Release 8), v8.2.0. June 2008.Google Scholar
  87. 87.
    Pauli, V., Naranjo, J. D., & Seidel, E. (2010). Heterogeneous LTE networks and inter-cell interference coordination. Nomor Research GmBH, 1–9.Google Scholar
  88. 88.
    3GPP R1-101369, LG Electronics, Considerations on interference coordination in heterogeneous networks, TSG-RAN WG1 Meeting no 60, San Francisco, USA. Feb 2010.Google Scholar
  89. 89.
    Kamel, M., & Elsayed, K. (2012). Performance evaluation of a coordinated time-domain EICIC framework based on ABSF in heterogeneous LTE-advanced networks. In Global communications conference (GLOBECOM), 2012 IEEE (pp. 5326–5331).Google Scholar
  90. 90.
    Xu, S., Han, J., & Chen, T. (2012). Enhanced inter-cell interference coordination in heterogeneous networks for LTE-advanced. In Vehicular technology conference (VTC Spring), 2012 IEEE 75th (pp. 1–5).Google Scholar
  91. 91.
    Kamel, M., & Elsayed, K. (2013). Enhanced ABSF offsetting with virtual arbitrary blanking rate for time domain EICIC in LTE-advanced. In Global communications conference (GLOBECOM), 2013 IEEE (pp. 4741–4746).Google Scholar
  92. 92.
    Li, Q., Xia, H., Zeng, Z., & Zhang, T. (2013). Dynamic enhanced inter-cell interference coordination using reinforcement learning approach in heterogeneous network. In Proceedings of the 15th IEEE international conference on communication technology (ICCT), 2013 (pp. 239–243).Google Scholar
  93. 93.
    Lopez-Perez, D., Guvenc, I., de la Roche, G., Kountouris, M., Quek, T., & Zhang, J. (2011). Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communications, 18(3), 22–30.CrossRefGoogle Scholar
  94. 94.
    Liu, P., Li, J., Li, H., Wang, K., & Meng, Y. (2015). Two-dimensional resource pattern optimization for interference avoidance in heterogeneous networks. IEEE Transactions on Vehicular Technology, 64(8), 3536–3546.CrossRefGoogle Scholar
  95. 95.
    Liu, P., Li, J., Li, H., & Meng, Y. (2014). Beyond EICIC-two-dimensional resource pattern optimization for macro-femto interference avoidance. In Proceedings of the 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC), 2014 IEEE (pp. 1180–1184).Google Scholar
  96. 96.
    3GPP R1-104968, Summary of the Description of Candidate eICIC Solutions, 3GPP Std., Madrid, Spain. Aug 2010.Google Scholar
  97. 97.
    Merwaday, A., Mukherjee, S., & Guvenc, I. (2014). Hetnet capacity with reduced power subframes. In Wireless communications and networking conference (WCNC), 2014 IEEE (pp. 1380–1385).Google Scholar
  98. 98.
    Huawei, R3-111969, Consideration on Transmission Power of ABSs, Athens, Greece. Aug 2011.Google Scholar
  99. 99.
    Jiang, H., Wang, H., Zhu, W., Li, Z., Pan, Z., Liu, N., You, X., & Yang, L. (2013). Carrier aggregation based interference coordination for LTE-A macro-pico HetNet. In Vehicular technology conference (VTC Spring), 2013 IEEE 77th (pp. 1–6).Google Scholar
  100. 100.
    Garcia, L., Pedersen, K., & Mogensen, P. (2009). Autonomous component carrier selection: Interference management in local area environments for LTE-advanced. IEEE Communications Magazine, 47(9), 110–116.CrossRefGoogle Scholar
  101. 101.
    Sun, C., Jiang, J., Huang, L., & Lu, G. (2012). Component carrier selection and interference coordination for carrier aggregation system in heterogeneous networks. In Proceedings of the 14th international conference on communication technology (ICCT), 2012 IEEE (pp. 402–407).Google Scholar
  102. 102.
    Zheng, K., Hu, F., Lei, L., & Wang, W. (2010). Interference coordination between femtocells in LTE-advanced networks with carrier aggregation. In Proceedings of the 5th international ICST conference on communications and networking in China (CHINACOM), 2010 (pp. 1–5).Google Scholar
  103. 103.
    Qinjuan, Z., Lin, G., Can, S., Xudong, A., & Xiaochen, C. (2014). Joint power control and component carrier assignment scheme in heterogeneous network with carrier aggregation. IET Communications, 8(10), 1831–1836.CrossRefGoogle Scholar
  104. 104.
    Xue, X., Zhao, J., & Qu, H. (2012). Inter-cell interference coordination scheme based on CoMP. In Proceedings of the 14th international conference on advanced communication technology (ICACT), 2012 (pp. 33–36).Google Scholar
  105. 105.
    Boujelben, M., Ben Rejeb, S., & Tabbane, S. (2014). A comparative study of interference coordination schemes for wireless mobile advanced systems. In The 2014 international symposium on networks, computers and communications (pp. 1–5).Google Scholar
  106. 106.
    Sun, S., Gao, Q., Peng, Y., Wang, Y., & Song, L. (2013). Interference management through CoMP in 3GPP LTE-advanced networks. IEEE Wireless Communications, 20(1), 59–66.CrossRefGoogle Scholar
  107. 107.
    Cao, Y., Xia, H., & Feng, C. (2013). Evaluation of diverse cell range expansion strategies applying CoMP in heterogeneous network. In Proceedings of the 24th international symposium on personal indoor and mobile radio communications (PIMRC), 2013 IEEE (pp. 1962–1966).Google Scholar
  108. 108.
    Tall, A., Altman, Z., & Altman, E. (2014). Self organizing strategies for enhanced ICIC (EICIC). In Proceedings of the 12th international symposium on modeling and optimization in mobile, Ad Hoc, and wireless networks (WiOpt), 2014 (pp. 318–325).Google Scholar
  109. 109.
    Rengarajan, B., Stolyar, A., & Viswanathan, H. (2010). Self-organizing dynamic fractional frequency reuse on the uplink of OFDMA systems. In Proceedings of the 44th annual conference on information sciences and systems (CISS), 2010 (pp. 1–6).Google Scholar
  110. 110.
    Gerlach, C. G., Karla, I., Weber, A., Ewe, L., Bakker, H., Kuehn, E., et al. (2010). ICIC in DL and UL with network distributed and self-organized resource assignment algorithms in LTE. Bell Labs Technical Journal, 15(3), 43–62.CrossRefGoogle Scholar
  111. 111.
    Shokri-Ghadikolaei, H., Fischione, C., Fodor, G., Popovski, P., & Zorzi, M. (2015). Millimeter wave cellular networks: A MAC layer perspective. IEEE Transactions on Communications, 63(10), 3437–3458.CrossRefGoogle Scholar
  112. 112.
    Lopez-Perez, D., Valcarce, A., de la Roche, G., & Zhang, J. (2009). OFDMA femtocells: A roadmap on interference avoidance. IEEE Communications Magazine, 47(9), 41–48.CrossRefGoogle Scholar
  113. 113.
    Shokri-Ghadikolaei, H., Fischione, C., Popovski, P., & Zorzi, M. (2016). Design aspects of short-range millimeter-wave networks: A MAC layer perspective. IEEE Network, 30(3), 88–96.CrossRefGoogle Scholar
  114. 114.
    Shokri-Ghadikolaei, H., Gkatzikis, L., & Fischione, C. (2015). Beam-searching and transmission scheduling in millimeter wave communications. In 2015 IEEE international conference on communications (ICC) (pp. 1292–1297).Google Scholar
  115. 115.
    Think Small cells.Google Scholar
  116. 116.
    Golrezaei, N., Shanmugam, K., Dimakis, A., Molisch, A., & Caire, G. (2012). Femtocaching: Wireless video content delivery through distributed caching helpers. In INFOCOM, 2012 Proceedings IEEE (pp. 1107–1115).Google Scholar
  117. 117.
    Peng, M., Li, Y., Zhao, Z., & Wang, C. (2015). System architecture and key technologies for 5G heterogeneous cloud radio access networks. IEEE Network, 29(2), 6–14.CrossRefGoogle Scholar
  118. 118.
    Monica Paolini, S. F. Fronthaul or backhaul for micro cells? A TCO comparison between two approaches to managing traffic from macro and micro cells in HetNets. White Paper.Google Scholar
  119. 119.
    Pizzinat, A., Chanclou, P., Saliou, F., & Diallo, T. (2015). Things you should know about fronthaul. Journal of Lightwave Technology, 33(5), 1077–1083.CrossRefGoogle Scholar
  120. 120.
    Breuer, D., Weis, E., Krauss, S., Belschner, J., & Geilhardt, F. (2015). Assessment of future backhaul and fronthaul networks for HetNet architectures. In Proceedings of the 17th international conference on transparent optical networks (ICTON), 2015 (pp. 1–2).Google Scholar
  121. 121.
    Antonopoulos, A., Kartsakli, E., Bousia, A., Alonso, L., & Verikoukis, C. (2015). Energy-efficient infrastructure sharing in multi-operator mobile networks. IEEE Communications Magazine, 53(5), 242–249.CrossRefGoogle Scholar
  122. 122.
    Bousia, A., Kartsakli, E., Antonopoulos, A., Alonso, L., & Verikoukis, C. (2016). Game-theoretic infrastructure sharing in multioperator cellular networks. IEEE Transactions on Vehicular Technology, 65(5), 3326–3341.CrossRefGoogle Scholar
  123. 123.
    Lin, P., Zhang, J., Chen, Y., & Zhang, Q. (2011). Macro-femto heterogeneous network deployment and management: From business models to technical solutions. IEEE Wireless Communications, 18(3), 64–70.CrossRefGoogle Scholar
  124. 124.
    Chandrasekhar, V., Andrews, J., Muharemovict, T., Shen, Z., & Gatherer, A. (2009). Power control in two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(8), 4316–4328.CrossRefGoogle Scholar
  125. 125.
    Ikuno, J., Wrulich, M., & Rupp, M. (2010) System level simulation of LTE networks. In Vehicular technology conference (VTC 2010-Spring), 2010 IEEE 71st (pp. 1–5).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer ScienceNational University of Sciences and TechnologyIslamabadPakistan
  2. 2.Instituto de Telecomunicaes Campus Universitrio de SantiagoAveiroPortugal
  3. 3.COMSATS Institute of Information Technology-WahWahPakistan
  4. 4.University Engineering and TechnologyTaxilaPakistan

Personalised recommendations