Advertisement

Systematic Parasitology

, Volume 95, Issue 5, pp 465–478 | Cite as

The first complete mitochondrial genome of a parasitic isopod supports Epicaridea Latreille, 1825 as a suborder and reveals the less conservative genome of isopods

  • Jialu Yu
  • Jianmei An
  • Yue Li
  • Christopher B. Boyko
Article
Part of the following topical collections:
  1. Arthropoda

Abstract

The complete mitochondrial genome sequence of the holoparasitic isopod Gyge ovalis (Shiino, 1939) has been determined. The mitogenome is 14,268 bp in length and contains 34 genes: 13 protein-coding genes, two ribosomal RNA, 19 tRNA and a control region. Three tRNA genes (trnE, trnI and trnS1) are missing. Most of the tRNA genes show secondary structures which derive from the usual cloverleaf pattern except for trnC which is characterised by the loss of the DHU-arm. Compared to the isopod ground pattern and Eurydice pulchra Leach, 1815 (suborder Cymothoida Wägele, 1989), the genome of G. ovalis shows few differences, with changes only around the control region. However, the genome of G. ovalis is very different from that of non-cymothoidan isopods and reveals that the gene order evolution in isopods is less conservative compared to other crustaceans. Phylogenic trees were constructed using maxiumum likelihood and Bayesian inference analyses based on 13 protein-coding genes. The results do not support the placement of G. ovalis with E. pulchra and Bathynomus sp. in the same suborder; rather, G. ovalis appears to have a closer relationship to Ligia oceanica (Linnaeus, 1767), but this result suggests a need for more data and further analysis. Nevertheless, these results cast doubt that Epicaridea Latreille, 1825 can be placed as an infraorder within the suborder Cymothoida, and Epicaridea appears to also deserve subordinal rank. Further development of robust phylogenetic relationships across Isopoda Latreille, 1817 will require more genetic data from a greater diversity of taxa belonging to all isopod suborders.

Notes

Acknowledgements

Our thanks to two anonymous reviewers whose comments greatly improved the manuscript.

Funding

This study was supported by the National Science Foundation of China (No. 31471970) and Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (2016).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional, national and international guidelines for the care and use of animals were followed.

References

  1. An, J., Williams, J. D., & Yu, H. (2009). The Bopyridae (Crustacea: Isopoda) parasitic on thalassinideans (Crustacea: Decapoda) from China. Proceedings of the Biological Society of Washington, 122, 225–246.CrossRefGoogle Scholar
  2. Boyko, C. B., Moss, J., Williams, J. D., & Shields, J. D. (2013). A molecular phylogeny of Bopyroidea and Cryptoniscoidea (Crustacea: Isopoda). Systematics & Biodiversity, 11, 495–506.CrossRefGoogle Scholar
  3. Brandt, A., & Poore, G. C. B. (2003). Higher classification of the flabelliferan and related Isopoda based on a reappraisal of relationships. Invertebrate Systematics, 17, 893–923.CrossRefGoogle Scholar
  4. Chandler, C. H., Badawi, M., Moumen, B., Grève, P., & Cordaux, R. (2015). Multiple conserved heteroplasmic sites in tRNA genes in the mitochondrial genomes of terrestrial isopods (Oniscidea). G3: Genes, Genomes, Genetics, 5, 1317–1322.CrossRefGoogle Scholar
  5. Costa, F. O., Dewaard, J. R., Boutillier, J., Ratnasingham, S., Dooh, R. T., Hajibabaei, M., et al. (2007). Biological identifications through DNA barcodes: the case of the Crustacea. Canadian Journal of Fisheries & Aquatic Sciences, 64, 272–295.CrossRefGoogle Scholar
  6. Dreyer, H., & Wägele, J. W. (2001). Parasites of crustaceans (Isopoda: Bopyridae) evolved from fish parasites: Molecular and morphological evidence. Zoology, 103, 157–178.Google Scholar
  7. Dreyer, H., & Wägele, J. W. (2002). The Scutocoxifera tax. nov. and the information content of nuclear ssu rDNA sequences for reconstruction of isopod phylogeny (Peracarida: Isopoda). Journal of Crustacean Biology, 22, 217–234.CrossRefGoogle Scholar
  8. Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.CrossRefPubMedGoogle Scholar
  9. Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  10. Hassanin, A. (2006). Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Molecular Phylogenetics & Evolution, 38, 100–116.CrossRefGoogle Scholar
  11. Hong, J. S., Lee, C. L., & Min, G. S. (2015). Occurrence of Orthione griffenis Markham, 2004 (Bopyridae: Isopoda: Crustacea) parasite of the mud shrimp (Upogebia major) in Korean waters and its ecological implications toward marine bioinvasion. Journal of Crustacean Biology, 35, 605–615.CrossRefGoogle Scholar
  12. Kilpert, F., & Podsiadlowski, L. (2006). The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features. BMC Genomics, 7, 241.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kilpert, F., & Podsiadlowski, L. (2010). The Australian freshwater isopod (Phreatoicidea: Isopoda) allows insights into the early mitogenomic evolution of isopods. Comparative Biochemistry & Physiology Part D Genomics & Proteomics, 5, 36–44.CrossRefGoogle Scholar
  14. Kilpert, F., Held, C., & Podsiadlowski, L. (2012). Multiple rearrangements in mitochondrial genomes of Isopoda and phylogenetic implications. Molecular Phylogenetics & Evolution, 64, 106–117.CrossRefGoogle Scholar
  15. Lloyd, R. E., Streeter, S. D., Foster, P. G., Littlewood, D. T. J., Huntley, J., Beckham, G. T., et al. (2015). The complete mitochondrial genome of Limnoria quadripunctata Holthuis (Isopoda: Limnoriidae). Mitochondrial DNA, 26, 825–826.CrossRefPubMedGoogle Scholar
  16. Lowe, T. M., & Eddy, S. R. (1997). TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25, 955–964.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Marcadé, I., Cordaux, R., Doublet, V., Debenest, C., Bouchon, D., & Raimond, R. (2007). Structure and evolution of the atypical mitochondrial genome of Armadillidium vulgare (Isopoda: Crustacea). Journal of Molecular Evolution, 65, 651–659.CrossRefPubMedGoogle Scholar
  18. Markham, J. C. (2004). New species and records of Bopyridae (Crustacea: Isopoda) infesting species of the genus Upogebia (Crustacea: Decapoda: Upogebiidae): the genera Orthione Markham, 1988, and Gyge Cornalia & Panceri, 1861. Proceedings of the Biological Society of Washington, 117, 186–198.Google Scholar
  19. Monod, T. (1922). Sur un essai de classification rationelle des Isopodes. Bulletin de la Société Zoologique de Paris, 47, 134–140.CrossRefGoogle Scholar
  20. Ojala, D., Montoya, J., & Attardi, G. (1981). tRNA punctuation model of RNA processing in human mitochondria. Nature, 290, 470–474.CrossRefPubMedGoogle Scholar
  21. Podsiadlowski, L., & Bartolomaeus, T. (2006). Major rearrangements characterize the mitochondrial genome of the isopod Idotea balthica (Crustacea: Peracarida). Molecular Phylogenetics & Evolution, 40, 893–899.CrossRefGoogle Scholar
  22. Posada, D., & Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817–818.CrossRefPubMedGoogle Scholar
  23. Raimond, R., Marcadé, I., Bouchon, D., Rigaud, T., Bossy, J. P., & Souty-Grosset, C. (1999). Organization of the large mitochondrial genome in the isopod Armadillidium vulgare. Genetics, 151, 203–210.PubMedPubMedCentralGoogle Scholar
  24. Raupach, M. J., Barco, A., Steinke, D., Beermann, J., Laakmann, S., Mohrbeck, I., et al. (2015). The application of DNA barcodes for the identification of marine crustaceans from the North Sea and adjacent regions. PLoS One, 10, e0139421.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.CrossRefPubMedGoogle Scholar
  26. Schuster, G., & Stern, D. (2009). RNA polyadenylation and decay in mitochondria and chloroplasts. Progress in Molecular Biology & Translational Science, 85, 393–422.CrossRefGoogle Scholar
  27. Shao, R. F., Kirkness, E. F., & Barker, S. C. (2009). The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus. Genome Research, 19, 904–912.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Shen, Y., Kou, Q., Zhong, Z., Li, X., He, L., He, S., et al. (2017). The first complete mitogenome of the South China deep-sea giant isopod Bathynomus sp. (Crustacea: Isopoda: Cirolanidae) allows insights into the early mitogenomic evolution of isopods. Ecology & Evolution, 7, 1869–1881.CrossRefGoogle Scholar
  29. Shi, E., Zhang, X., & An, J. (2014). Cladistic analysis of the phylogenetic relationships among species of family Bopyridae (Crustacea, Isopoda) based on morphological characters. Sichuan Journal of Zoology, 33, 665–672.Google Scholar
  30. Shiino, S. M. (1939). Bopyrids from Kyûsyû and Ryûkyû. Records of Oceanographic Works in Japan, 10, 79–99.Google Scholar
  31. Sielaff, M., Schmidt, H., Struck, T. H., Rosenkranz, D., Welch, D. B. M., Hankeln, T., et al. (2016). Phylogeny of Syndermata (syn. Rotifera): Mitochondrial gene order verifies epizoic Seisonidea as sister to endoparasitic Acanthocephala within monophyletic Hemirotifera. Molecular Phylogenetics & Evolution, 96, 79–92.CrossRefGoogle Scholar
  32. Strömberg, J.-O. (1972). Isopod phylogeny. Aspects based on embryological, morphological and palaeontological evidence. Contributions of the Zoological Institute of the University of Lund, 1972, 1–112.Google Scholar
  33. Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101, 11030–11035.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Willams, J. D., & Boyko, C. B. (2016). Introduction to the Symposium. Parasites and pests in motion: Biology, biodiversity and climate change. Integrative & Comparative Biology, 56, 556–560.CrossRefGoogle Scholar
  35. Wolstenholme, D. R. (1992). Animal mitochondrial DNA: structure and evolution. International Review of Cytology, 141, 173–216.CrossRefPubMedGoogle Scholar
  36. WoRMS Editorial Board (2018). World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 5 March 2018.
  37. Zhang, D. X., Szymura, J. M., & Hewitt, G. M. (1995). Evolution and structural conservation of the control region of insect mitochondrial DNA. Journal of Molecular Evolution, 40, 382–391.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jialu Yu
    • 1
  • Jianmei An
    • 1
  • Yue Li
    • 1
  • Christopher B. Boyko
    • 2
  1. 1.School of Life ScienceShanxi Normal UniversityLinfenPeople’s Republic of China
  2. 2.Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA

Personalised recommendations