Skip to main content
Log in

Phylogenetic evidence for an ancestral coevolution between a major clade of coccidian parasites and elasmobranch hosts

  • Published:
Systematic Parasitology Aims and scope Submit manuscript

Abstract

Cartilaginous fishes are the oldest jawed vertebrates and are also reported to be the hosts of some of the most basal lineages of Cestoda and Aporocotylidae (Digenea) parasites. Recently a phylogenetic analysis of the coccidia (Apicomplexa) infecting marine vertebrates revealed that the lesser spotted dogfish harbours parasite lineages basal to Eimeria Schneider, 1875 and the group formed by Schellackia Reichenow, 1919, Lankesterella Ames, 1923, Caryospora Leger, 1904 and Isospora Schneider, 1881. In the present study we have found additional lineages of coccidian parasites infecting the cownose ray Rhinoptera bonasus Mitchill and the blue shark Prionace glauca Linnaeus. These lineages were also found as basal to species from the genera Lankesterella, Schellackia, Caryospora and Isospora infecting higher vertebrates. These results confirm previous phylogenetic assessments and suggest that these parasitic lineages first evolved in basal vertebrate hosts (i.e. Chondrichthyes), and that the more derived lineages infect higher vertebrates (e.g. birds and mammals) conforming to the evolution of their hosts. We hypothesise that elasmobranchs might host further ancestral parasite lineages harbouring unknown links of parasite evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Belli, S. I., Smith, N. C., & Ferguson, D. J. P. (2006). The coccidian oocyst: A tough nut to crack! Trends of Parasitology, 22, 416–423.

    Article  CAS  Google Scholar 

  • Caira, J. N., & Jensen, K. (Eds) (2017). Planetary biodiversity inventory (20082017): Tapeworms from vertebrate bowels of the earth. Special Publication No. 25. Lawrence, Kansas, USA: University of Kansas Natural History Museum, 463 pp.

  • Chapman, P. A., Owen, H., Flint, M., Traub, R. J., Cribb, T. H., & Mills, P. C. (2016). Molecular Characterization of coccidia associated with an epizootic in green sea turtles (Chelonia mydas) in South East Queensland, Australia. PLoS ONE, 11, e0149962.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cribb, T. H., Chick, R. C., O’Connor, W., O’Connor, S., Johnson, D., Sewell, K. B., et al. (2017). Evidence that blood flukes (Trematoda: Aporocotylidae) of chondrichthyans infect bivalves as intermediate hosts: indications of an ancient diversification of the Schistosomatoidea. International Journal for Parasitology, 47, 885–891.

    Article  PubMed  Google Scholar 

  • Dentzien-Dias, P. C., Poinar, G. J., De Figueiredo, A. E. Q., Pacheco, A. C. L., Horn, B. L., & Schultz, C. L. (2013). Tapeworm eggs in a 270 million-year-old shark coprolite. PLoS ONE, 8, e55007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.

    Article  CAS  PubMed  Google Scholar 

  • Leung, T. L. F. (2017). Fossils of parasites: What can the fossil record tell us about the evolution of parasitism? Biological Reviews, 92, 410–430.

    Article  PubMed  Google Scholar 

  • Megía-Palma, R., Martínez, J., Nasri, I., Cuervo, J. J., Martín, J., Acevedo, I., et al. (2016). Phylogenetic relationships of Isospora, Lankesterella, and Caryospora species (Apicomplexa: Eimeriidae) infecting lizards. Organisams Diversity & Evolution, 16, 275–288.

    Article  Google Scholar 

  • Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, pp. 1–8.

  • Molnár, K., Ostoros, G., Dunams-Morel, D., & Rosenthal, B. (2012). Eimeria that infect fish are diverse and are related to, but distinct from, those that infect terrestrial vertebrates. Infection, Genetics and Evolution, 12, 1810–1815.

    Article  PubMed  Google Scholar 

  • Ogedengbe, M. E., Qvarnstrom, Y., da Silva, A. J., Arrowood, M. J., & Barta, J. R. (2015). A linear mitochondrial genome of Cyclospora cayetanensis (Eimeriidae, Eucoccidiorida, Coccidiasina, Apicomplexa) suggests the ancestral start position within mitochondrial genomes of eimeriid coccidia. International Journal for Parasitology, 45, 361–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson, P. D., Caira, J. N., Jensen, K., Overstreet, R. M., Palm, H. W., & Beveridge, I. (2010). Evolution of the trypanorhynch tapeworms: Parasite phylogeny supports independent lineages of sharks and rays. International Journal for Parasitology, 40, 223–242.

    Article  CAS  PubMed  Google Scholar 

  • Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer edn.

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenthal, B. M., Dunams-Morela, D., Ostoros, G., & Molnár, K. (2016). Coccidian parasites of fish encompass profound phylogenetic diversity and gave rise to each of the major parasitic groups in terrestrial vertebrates. Infection Genetics and Evolution, 40, 219–227.

    Article  Google Scholar 

  • Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenter, A. M., Barta, J. R., Beveridge, I., Duszynski, D. W., Mehlhorn, H., Morrison, D. A., et al. (2002). The conceptual basis for a new classification of the coccidia. International Journal for Parasitology, 32, 595–616.

    Article  PubMed  Google Scholar 

  • Ujvari, B., Madsen, T., & Olsson, M. (2004). High prevalence of Hepatozoon spp. (Apicomplexa, Hepatozoidae) infection in water pythons (Liasis fuscus) from tropical Australia. Journal of Parasitology, 90, 670–672.

    Article  PubMed  Google Scholar 

  • Xavier, R., Severino, R., Perez-Losada, M., Gestal, C., Freitas, R., Harris, D. J., et al. (2018). Phylogenetic analysis of apicomplexan parasites infecting commercially valuable species from the Northeast Atlantic reveals high levels of diversity and insights into the evolution of the group. Parasites & Vectors, 11, 63.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks David J. Harris for useful comments on the manuscript, and Jan R. McDowell for sharing cownose ray tissue samples.

Funding

This work was funded by FEDER funds through the Operational Programme for Competitiveness Factors - COMPETE and by National Funds through FCT - Foundation for Science and Technology under the project PTDC/MAR-BIO/0902/2014, PTDC/MAR-BIO/4458/2012 and POCI-01-0145-FEDER-016550, and partially funded by the Norte Portugal Regional Operational Programme (NORTE 2020) under the PORTUGAL 2020 Partnership Agreement under project MarInfo. RX and AV are supported by FCT under the Programa Operacional Potencial Humano - Quadro de Referência Estratégico Nacional from the European Social Fund and Portuguese Ministério da Educação e Ciência (RX: IF/00359/2015; AV post-doctoral Grant SFRH/BPD/77487/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Xavier.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional, national and international guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, R., Santos, J.L. & Veríssimo, A. Phylogenetic evidence for an ancestral coevolution between a major clade of coccidian parasites and elasmobranch hosts. Syst Parasitol 95, 367–371 (2018). https://doi.org/10.1007/s11230-018-9790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11230-018-9790-4

Navigation