Synthese

pp 1–20 | Cite as

Stochasticity and Bell-type quantum field theory

Article
  • 2 Downloads

Abstract

This paper critically discusses an objection proposed by Nikolić against the naturalness of the stochastic dynamics implemented by the Bell-type quantum field theory, an extension of Bohmian mechanics able to describe the phenomena of particles creation and annihilation. Here I present: (1) Nikolić’s ideas for a pilot-wave theory accounting for QFT phenomenology evaluating the robustness of his criticism, (2) Bell’s original proposal for a Bohmian QFT with a particle ontology and (3) the mentioned Bell-type QFT. I will argue that although Bell’s model should be interpreted as a heuristic example showing the possibility to extend Bohm’s pilot-wave theory to the domain of QFT, the same judgement does not hold for the Bell-type QFT, which is candidate to be a promising possible alternative proposal to the standard version of quantum field theory. Finally, contra Nikolić, I will provide arguments in order to show how a stochastic dynamics is perfectly compatible with a Bohmian quantum theory.

Keywords

Quantum field theory Bohmian mechanics Bell-type quantum field theory Primitive ontology 

Notes

Acknowledgements

I would like to thank Michael Esfeld, Anna Marmodoro, Davide Romano, Dustin Lazarovici, Mario Hubert, Olga Sarno and the anonymous referees for helpful comments on this paper. I am grateful to the Swiss National Science Foundation for financial support (Grant No. 105212-175971).

References

  1. Allori, V., Goldstein, S., Tumulka, R., & Zanghì, N. (2008). On the common structure of Bohmian mechanics and the Ghirardi–Rimini–Weber theory. British Journal for the Philosophy of Science, 59(3), 353–389.CrossRefGoogle Scholar
  2. Allori, V., Goldstein, S., Tumulka, R., & Zanghì, N. (2014). Predictions and primitive ontology in quantum foundations: A study of examples. British Journal for the Philosophy of Science, 65(2), 323–352.CrossRefGoogle Scholar
  3. Barrett, J. A. (2014). Entanglement and disentanglement in relativistic quantum mechanics. Studies in History and Philosophy of Modern Physics, 48, 168–174.CrossRefGoogle Scholar
  4. Bell, J. S. (1975). The theory of local beables. In TH 2053-CERN (pp. 1–14).Google Scholar
  5. Bell, J. S. (1986). Beables for quantum field theory. Physics Reports, 137, 49–54.CrossRefGoogle Scholar
  6. Bell, J. S. (1987). Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press.Google Scholar
  7. Bohm, D. (1952a). A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Physical Review, 85(2), 166–179.CrossRefGoogle Scholar
  8. Bohm, D. (1952b). A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Physical Review, 85(2), 180–193.CrossRefGoogle Scholar
  9. Bohm, D., & Vigier, J. P. (1954). Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Physical Review, 96(1), 208–216.CrossRefGoogle Scholar
  10. Bricmont, J. (2016). Making sense of quantum mechanics. Berlin: Springer.CrossRefGoogle Scholar
  11. Butterfield, J. (2007). Reconsidering relativistic causality. International Studies in the Philosophy of Science, 21(3), 295–328.CrossRefGoogle Scholar
  12. Colin, S. (2003). A deterrministic Bell model. Physics Letters A, 317(5–6), 349–358.CrossRefGoogle Scholar
  13. Colin, S., & Struyve, W. (2007). A Dirac sea pilot-wave model for quantum field theory. Journal of Physics A, 40(26), 7309–7341.CrossRefGoogle Scholar
  14. Dürr, D., Goldstein, S., Munch-Berndl, K., & Zanghì, N. (1992). Hypersurface Bohm–Dirac models. Physical Review A, 68, 2729–2736.Google Scholar
  15. Dürr, D., Goldstein, S., Norsen, T., Struyve, W., & Zanghì, N. (2013a). Can Bohmian mechanics be made relativistic? Proceedings of the Royal Society A, 470(2162), 20130699.CrossRefGoogle Scholar
  16. Dürr, D., Goldstein, S., Tumulka, R., & Zanghì, N. (2004a). Bohmian mechanics and quantum field theory. Physical Review Letters, 93, 090402.CrossRefGoogle Scholar
  17. Dürr, D., Goldstein, S., Tumulka, R., & Zanghì, N. (2005). Bell-type quantum field theories. Journal of Physics A: Mathematical and General, 38(4), R1–R43.CrossRefGoogle Scholar
  18. Dürr, D., Goldstein, S., & Zanghì, N. (2004b). Quantum equilibrium and the role of operators as observables in quantum theory. Journal of Statistical Physics, 116, 959–1055.CrossRefGoogle Scholar
  19. Dürr, D., Goldstein, S., & Zanghì, N. (2013b). Quantum physics without quantum philosophy. Berlin: Springer.CrossRefGoogle Scholar
  20. Dürr, D., & Teufel, S. (2009). Bohmian mechanics: The physics and mathematics of quantum theory. Berlin: Springer.Google Scholar
  21. Esfeld, M. (2014). The primitive ontology of quantum physics: Guidelines for an assessment of the proposals. Studies in History and Philosophy of Modern Physics, 47, 99–106.CrossRefGoogle Scholar
  22. Goldstein, S., Taylor, J., Tumulka, R., & Zanghì, N. (2005a). Are all particles identical? Journal of Physics A: Mathematical and General, 38(7), 1567–1576.CrossRefGoogle Scholar
  23. Goldstein, S., Taylor, J., Tumulka, R., & Zanghì, N. (2005b). Are all particles real? Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 36(1), 103–112.CrossRefGoogle Scholar
  24. Hiley, B. & Callaghan, R. E. (2010). The Clifford algebra approach to quantum mechanics B: The Dirac particle and its relation to the Bohm approach. arXiv:1011.4033.
  25. Horton, G., & Dewdney, C. (2001). A non-local, Lorentz-invariant, hidden-variable interpretation of relativistic quantum mechanics based on particle trajectories. Journal of Physics A: Mathematical and General, 34(46), 9871–9878.CrossRefGoogle Scholar
  26. Horton, G., & Dewdney, C. (2004). A relativistically covariant version of Bohm’s quantum field theory for the scalar field. Journal of Physics A: Mathematical and General, 37(49), 11935–11943.CrossRefGoogle Scholar
  27. Lienert, M. (2011). Pilot-wave theory and quantum fields. http://philsci-archive.pitt.edu/8710/.
  28. Nikolić, H. (2006). Relativistic Bohmian interpretation of quantum mechanics. In AIP conference proceedings (Vol. 844).Google Scholar
  29. Nikolić, H. (2010). QFT as pilot-wave theory of particle creation and destruction. International Journal of Modern Physics A, 25(7), 1477–1505.CrossRefGoogle Scholar
  30. Nikolić, H. (2013). Time and probability: From classical mechanics to relativistic Bohmian mechanics (pp. 1–53). arXiv:1309.0400.
  31. Struyve, W. (2010). Pilot-wave approaches to quantum field theory. Journal of Physics: Conference Series, 306, 012047.Google Scholar
  32. Tumulka, R., & Georgii, H.-O. (2005). Some jumps processes in quantum field theory. In J. D. Dueschel & A. Greven (Eds.), Interacting stochastic systems (pp. 55–74). Berlin: Springer.CrossRefGoogle Scholar
  33. Valentini, A. (1991). Signal-locality, uncertainty, and the subquantum H-theorem. II. Physics Letters A, 158(1–2), 1–8.CrossRefGoogle Scholar
  34. Vink, J. C. (1993). Quantum mechanics in terms of discrete variables. Physical Review A, 48, 1808–1818.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of LausanneLausanneSwitzerland

Personalised recommendations