Skip to main content
Log in

The effectiveness of mathematics in physics of the unknown

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

If physics is a science that unveils the fundamental laws of nature, then the appearance of mathematical concepts in its language can be surprising or even mysterious. This was Eugene Wigner’s argument in 1960. I show that another approach to physical theory accommodates mathematics in a perfectly reasonable way. To explore unknown processes or phenomena, one builds a theory from fundamental principles, employing them as constraints within a general mathematical framework. The rise of such theories of the unknown, which I call blackbox models, drives home the unsurprising effectiveness of mathematics. I illustrate it on the examples of Einstein’s principle theories, the S-matrix approach in quantum field theory, effective field theories, and device-independent approaches in quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aharon, N., Massar, S., Pironio, S., & Silman, J. (2016). Device-independent bit commitment based on the CHSH inequality. New Journal of Physics, 18, 025014. arXiv:1511.06283.

  • Appelquist, T., & Bjorken, J. D. (1971). Weak interactions at high energies. Physical Review D, 4(12), 3726–3737.

    Article  Google Scholar 

  • Bancal, J.-D. (2013). On the device-independent approach to quantum physics: Advances in quantum nonlocality and multipartite entanglement detection. Geneva: Springer.

    Google Scholar 

  • Bancal, J.-D., Gisin, N., Liang, Y.-C., & Pironio, S. (2011). Device-independent witnesses of genuine multipartite entanglement. Physical Review Letters, 106, 250404.

    Article  Google Scholar 

  • Bardyn, C.-E., Liew, T. C. H., Massar, S., McKague, M., & Scarani, V. (2009). Device-independent state estimation based on Bell’s inequalities. Physical Review A, 80, 062327.

    Article  Google Scholar 

  • Barrett, J., Hardy, L., & Kent, A. (2005). No signaling and quantum key distribution. Physical Review Letters, 95(1), 010503.

    Article  Google Scholar 

  • Baumeler, Ä., & Wolf, S. (2014). Perfect signaling among three parties violating predefined causal order. In Proceedings of 2014 IEEE international symposium on information theory (ISIT) (pp. 526–530). Red Hook, NY: Institute of Electrical and Electronics Engineers (IEEE).

  • Bell, J. (1964). On the Einstein–Podolsky–Rosen paradox. Physica, 1, 195–200.

    Google Scholar 

  • Bilaniuk, O. M. P, & Sudarshan, E. C. G. (1969). Particles beyond the light barrier. Physics Today, 22, 43–51. This is the first known reference in press. Attribution to Gell-Mann is however indisputable.

  • Brown, H. (2005). Physical relativity: Space-time structure from a dynamical perspective. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Brown, H., & Timpson, C. (2006). Why special relativity should not be a template for a fundamental reformulation of quantum mechanics. In W. Demopoulous, & I. Pitowsky (Eds.), Physical theory and its interpretation (pp. 29–42). Amsterdam: Springer. arXiv:quant-ph/0601182.

  • Cirel’son, B. S. (1980). Quantum generalizations of Bell’s inequality. Letters in Mathematical Physics, 4(2), 93–100.

    Article  Google Scholar 

  • Clauser, J., Holt, R., Horne, M., & Shimony, A. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23, 880–884.

    Article  Google Scholar 

  • Colbeck, R. (2006). Quantum and relativistic protocols for secure multi-party computation. PhD thesis, University of Cambridge.

  • Darrigol, O. (2014). Physics and necessity. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Dyson, F. (1949a). The radiation theories of Tomonaga, Schwinger, and Feynman. Physical Review, 75, 486–502.

    Article  Google Scholar 

  • Dyson, F. (1949b). The \(S\)-matrix in quantum electrodynamics. Physical Review, 75, 1736–1755.

    Article  Google Scholar 

  • Einstein, A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 17, 132–148.

    Article  Google Scholar 

  • Einstein, A. (1949). Autobiographical notes. In P. Schlipp (Ed.), Albert Einstein: Philosopher–scientist (Vol. 7, pp. 1–94)., The library of living philosophers IL: Open Court.

    Google Scholar 

  • Einstein, A. (1982). What is the theory of relativity? London Times, 1919. Reprinted in: A. Einstein, Ideas and opinions, Crown Publishers, New York.

  • Einstein, A. (1987). Letter to Maurice Solovine, May 7, 1952. In Letters to Solovine (pp. 121–125). New York: Philosophical Library.

  • Einstein, A. (2004). Address to a scientific meeting in Zurich, 1911. Cited in: P. Galison, Einstein’s Clocks, Poincaré’s Maps. Empires of Time (p. 268). London: Hodder and Stoughton.

  • Euler, H. (1936). Über die Streuung von Licht an Licht nach der Diracschen Theorie. Ann. der Physik, 418, 398–448.

    Article  Google Scholar 

  • Euler, H., & Kockel, B. (1935). Über die Streuung von Licht an Licht nach der Diracschen Theorie. Naturwissenschaften, 23, 246.

    Article  Google Scholar 

  • Fock, V. (1959). The theory of space, time and gravitation. Gostekhizdat, Moscow, 1955. English edition: Pergamon Press.

  • Fock, V. (1971). The principle of relativity with respect to observation in modern physics. Vestnik AN SSSR, 4, 8–12.

    Google Scholar 

  • Friedman, M. (2001). Dynamics of reason. Stanford: CSLI Publications.

    Google Scholar 

  • Frisch, M. (2005). Mechanisms, principles, and Lorentz’s cautious realism. Studies in the History and Philosophy of Modern Physics, 36, 659–679.

    Article  Google Scholar 

  • Giddings, S. B. (2013). The gravitational \(S\)-matrix. In 48th course of the Erice International School of Subnuclear Physics, volume 48 of Subnuclear Ser. (pp. 93–147). arXiv:1105.2036.

  • Grinbaum, A. (2017). How device-independent approaches change the meaning of physical theory. Studies in the History and Philosophy of Modern Physics. doi:10.1016/j.shpsb.2017.03.003. arXiv:1512.01035.

  • Grythe, I. (1982). Some remarks on the early \(S\)-matrix. Centaurus, 26, 198–203.

    Article  Google Scholar 

  • Heisenberg, W. (1925). Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeit. f. Phys., 33, 879–893.

    Article  Google Scholar 

  • Heisenberg, W. (1938). Über die in der Theorie der Elementarteilchen auftretende universelle Länge. Annals of Physics, 424, 20–33.

    Article  Google Scholar 

  • Heisenberg, W. (1942). Die “beobachbaren Grössen” in der Theorie der Elementarteilchen. Zeit. f. Phys., 120, 513–539. English translation in [38, pp. 1030–1031].

  • Heisenberg, W., & Euler, H. (1936). Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys., 98, 714.

    Article  Google Scholar 

  • Lange, M. (2014). Did Einstein really believe that principle theories are explanatorily powerless? Perspectives on Science, 22(4), 449–463.

    Article  Google Scholar 

  • Mayers, D. & Yao, A. (1998).Quantum cryptography with imperfect apparatus. In FOCS 1998: Proceedings of the 39th annual symposium on foundations of computer science (pp. 503–509). Los Alamitos, CA, USA: IEEE Computer Society.

  • Mehra, J., & Rechenberg, H. (2001). The conceptual completion and the extensions of quantum mechanics 1932–1941. Epilogue: Aspects of the Further Development of Quantum Theory 1942–1999, volume 6 of The Historical Development of Quantum Theory. New York: Springer.

  • Noyes, H. P. (ed.) (1954). Proceedings of the fourth annual Rochester conference on high energy nuclear physics. The University of Rochester and The National Science Foundation.

  • Pauli, W. (1946). Letter to W. Heisenberg, 9 September 1946. Cited in Rechenberg (1989, p. 566).

  • Pauli, W. (1948). Letter to W. Heisenberg, 20 October 1948. Cited in Rechenberg (1989, p. 568).

  • Pich, A. (1999). Effective field theory. In R. Gupta, et al. (Eds.), Proceedings of Les Houches summer school of theoretical physics ‘Probing the Standard Model of Particle Interactions’ (vol. II, p. 949). Amsterdam: Elsevier. arXiv:hep-ph/9806303.

  • Pironio, S., et al. (2010). Random numbers certified by Bell’s theorem. Nature, 464, 1021–1024.

    Article  Google Scholar 

  • Popescu, S. (2014). Nonlocality beyond quantum mechanics. Nature Physics, 10, 264–270.

    Article  Google Scholar 

  • Popescu, S., & Rohrlich, D. (1994). Nonlocality as an axiom for quantum theory. Foundations of Physics, 24, 379. arXiv:quant-ph/9508009.

  • Rechenberg, H. (1989). The early \(S\)-matrix theory and its propagation (1942–1952). In L. M. Brown, M. Dresden, L. Hoddeson, & M. West (Eds.), Pions to quarks: Particle physics in the 1950s (pp. 551–578). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Shankar, R. (1999). Effective field theory in condensed matter physics. In T. Y. Cao (Ed.), Conceptual foundations of quantum field theory (pp. 47–55). Cambridge: Cambridge University Press.

    Google Scholar 

  • Veneziano, G. (1968). Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising trajectories. Nuovo Cimento A, 57, 190–197.

    Article  Google Scholar 

  • Weinberg, S. (1967). Dynamical approach to current algebra. Physical Review Letters, 18, 188–191.

    Article  Google Scholar 

  • Weinberg, S. (1979). Phenomenological lagrangians. Physica, 96A, 327–340.

    Article  Google Scholar 

  • Weinberg, S. (1989). Precision tests of quantum mechanics. Physical Review Letters, 62, 485–488.

    Article  Google Scholar 

  • Weinberg, S. (1996). Sokal’s hoax. The New York Review of Books, XLII, I(13), 11–15.

    Google Scholar 

  • Wentzel, G. (1947). Recent research in meson theory. Reviews of Modern Physics, 19, 1–18.

    Article  Google Scholar 

  • Wheeler, J. (1937). On the mathematical description of light nuclei by the method of resonating group structure. Physical Review, 52, 1107–1122.

    Article  Google Scholar 

  • Wigner, E. (1960). The unreasonable effectiveness of mathematics in the natural sciences. Communications in Pure and Applied Mathematics, 13, 1–14.

    Article  Google Scholar 

  • Wilson, K. G. (1971). The renormalization group and strong interactions. Physical Review D, 3, 1818.

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to Bryan Roberts for helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Grinbaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinbaum, A. The effectiveness of mathematics in physics of the unknown. Synthese 196, 973–989 (2019). https://doi.org/10.1007/s11229-017-1490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-017-1490-0

Keywords

Navigation