# Knowledge, belief, normality, and introspection

## Abstract

We study two logics of knowledge and belief stemming from the work of Stalnaker (2006), omitting positive introspection for knowledge. The two systems are equivalent with positive introspection, but not without. We show that while the logic of beliefs remains unaffected by omitting introspection for knowledge in one system, it brings significant changes to the other. The resulting logic of belief is non-normal, and its complete axiomatization uses an infinite hierarchy of coherence constraints. We conclude by returning to the philosophical interpretation underlying both models of belief, showing that neither is strong enough to support a probabilistic interpretation, nor an interpretation in terms of certainty or the “mental component” of knowledge.

## Keywords

Epistemic logic Doxastic logic Epistemic–doxastic logic Stalnaker Epistemology Formal epistemology## References

- Baltag, A., Bezhanishvili, N., Özgün, A., & Smets, S. (2013). The topology of belief, belief revision and defeasible knowledge. In D. Grossi, O. Roy & H. Huang (Eds.),
*Logic, Rationality, and Interaction*. LORI 2013. Lecture Notes in Computer Science (Vol. 8196). Berlin: Springer.Google Scholar - Blackburn, P., De Rijke, M., & Venema, Y. (2002).
*Modal logic*(Vol. 53). Cambridge: Cambridge University Press.Google Scholar - Chellas, B. F. (1980).
*Modal logic: An introduction*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Ciabattoni, A., Ramanayake, R., & Wansing, H. (2014). Hypersequent and display calculi-a unified perspective.
*Studia Logica*,*102*(6), 1245–1294.CrossRefGoogle Scholar - Fagin, R., Geanakoplos, J., Halpern, J. Y., & Vardi, M. Y. (1999). The hierarchical approach to modeling knowledge and common knowledge.
*International Journal of Game Theory*,*28*(3), 331–365.CrossRefGoogle Scholar - Galeazzi, P., & Lorini, E. (2016). Epistemic logic meets epistemic game theory: A comparison between multi-agent kripke models and type spaces.
*Synthese*,*193*(7), 2097–2127.CrossRefGoogle Scholar - Gentzen, G. (1935). Untersuchungen über das logische schließen. i.
*Mathematische Zeitschrift*,*39*(1), 176–210.CrossRefGoogle Scholar - Hendricks, V. F. (2003). Active agents.
*Journal of Logic, Language and Information*,*12*(4), 469–495.CrossRefGoogle Scholar - Hintikka, J. (1962).
*Knowledge and belief: An introduction to the logic of the two notions*. New York: Cornell University Press.Google Scholar - Klein, D., & Pacuit, E. (2014). Changing types: Information dynamics for qualitative type spaces.
*Studia Logica*,*102*(2), 297–319.CrossRefGoogle Scholar - Kracht, M. (1996). Power and weakness of the modal display calculus. In H. Wansing (Ed.),
*Proof theory of modal logic*(pp. 95–120). Oxford: OUP.Google Scholar - Leitgeb, H. (2014). The stability theory of belief.
*Philosophical Review*,*123*(2), 131–171.CrossRefGoogle Scholar - Lenzen, W. (1979). Epistemologische betrachtungen zu [s4, s5].
*Erkenntnis*,*14*(1), 33–56.CrossRefGoogle Scholar - Özgün, A. (2013). Topological models for belief and belief revision. Master’s thesis, Universiteit van Amsterdam.Google Scholar
- Poggiolesi, F. (2011). Display calculi and other modal calculi: A comparison.
*Synthese*,*173*, 259–279.CrossRefGoogle Scholar - Stalnaker, R. (2006). On logics of knowledge and belief.
*Philosophical Studies*,*128*(1), 169–199.CrossRefGoogle Scholar - Wansing, H. (1998).
*Displaying modal logic*. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar - Wansing, H. (2002). Sequent systems for modal logics. In
*Handbook of philosophical logic*(Vol. 8, pp. 61–145). Berlin: Springer.Google Scholar - Williamson, T. (2000).
*Knowledge and its limits*. oxford: Oxford University Press.Google Scholar