Existence and Lyapunov Pairs for the Perturbed Sweeping Process Governed by a Fixed Set
Article
First Online:
Received:
Accepted:
- 7 Downloads
Abstract
The aim of this paper is to prove existence results for a class of sweeping processes in Hilbert spaces by using the catching-up algorithm. These processes are governed by ball-compact non autonomous sets. Moreover, a full characterization of nonsmooth Lyapunov pairs is obtained under very general hypotheses. We also provide a criterion for weak invariance. Some applications to hysteresis and crowd motion are given.
Keywords
Sweeping process Lyapunov pair Differential inclusions Invariance Normal coneMathematics Subject Classification (2010)
34A60 49J52 34G25 49J53 93D30Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
The author wishes to express his deep gratitude to Prof. Abderrahim Jourani for his constant encouragement. Moreover, the author wishes to thank the referees for their helpful comments and suggestions which substantially improved the paper.
References
- 1.Adly, S., Hantoute, A., Théra, M.: Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions. Nonlinear Anal. 75(3), 985–1008 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 2.Adly, S., Hantoute, A., Théra, M.: Nonsmooth Lyapunov pairs for differential inclusions governed by operators with nonempty interior domain. Math. Program. 157 (2), 349–374 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 3.Aizicovici, S., Staicu, V.: Multivalued evolution equations with nonlocal initial conditions in Banach spaces. NoDEA Nonlinear Diff. Equat. Appl. 14(3), 361–376 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 4.Aubin, J.P.: Viability theory. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston (1991)Google Scholar
- 5.Aubin, J.P., Cellina, A.: Differential Inclusions, Grundlehren Mathematics Wissenschaften, vol. 264. Springer-Verlag, Berlin (1984)Google Scholar
- 6.Benabdellah, H.: Existence of solutions to the nonconvex sweeping process. J. Diff. Equat. 164(2), 286–295 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 7.Bernicot, F., Venel, J.: Convergence order of a numerical scheme for sweeping process. SIAM J. Control Optim. 51(4), 3075–3092 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 8.Bounkhel, M.: Regularity Concepts in Nonsmooth Analysis. Springer, Berlin (2012)CrossRefMATHGoogle Scholar
- 9.Bounkhel, M., Thibault, L.: On various notions of regularity of sets in nonsmooth analysis. Nonlinear Anal. 48(2), 223–246 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 10.Bounkhel, M., Thibault, L.: Nonconvex sweeping process and prox-regularity in Hilbert space. J. Nonlinear Convex Anal. 6(2), 359–374 (2005)MathSciNetMATHGoogle Scholar
- 11.Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973)Google Scholar
- 12.Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. Syst. Control Lett. 55(1), 45–51 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 13.Cȧrjȧ, O., Monteiro-Marques, M.D.P.: Weak tangency, weak invariance, and Carathéodory mappings. J. Dyn. Control Syst. 8(4), 445–461 (2002)CrossRefMATHGoogle Scholar
- 14.Castaing, C., Duc Ha, T.X., Valadier, M.: Evolution equations governed by sweeping process. Set-Valued Anal. 1, 109–139 (1993)MathSciNetCrossRefMATHGoogle Scholar
- 15.Castaing, C., Monteiro-Marques, M.D.P.: Evolution problems associated with nonconvex closed moving sets. Port. Math. 53(1), 73–87 (1995)MathSciNetMATHGoogle Scholar
- 16.Clarke, F.: Optimization and Nonsmooth Analysis. Wiley Intersciences, New York (1983)MATHGoogle Scholar
- 17.Clarke, F.: Lyapunov functions and feedback in nonlinear control. In: de Queiroz, M., Malisoff, M., Wolenski, P. (eds.) Optimal Control, Stabilization and Nonsmooth Analysis. Springer, Berlin Heidelberg (2004)Google Scholar
- 18.Clarke, F.: Nonsmooth analysis in systems and control theory. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science. Springer, New York (2009)Google Scholar
- 19.Clarke, F., Ledyaev, Y., Stern, R., Wolenski, P.: Nonsmooth Analysis and Control Theory, Grad Texts in Mathematics, vol. 178. Springer-Verlag, New York (1998)Google Scholar
- 20.Cojocaru, M.G., Daniele, P., Nagurney, A.: Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications. J. Optim. Theory Appl. 127(3), 549–563 (2005)MathSciNetCrossRefMATHGoogle Scholar
- 21.Colombo, G., Goncharov, V.V.: The sweeping process without convexity. Set-Valued Anal. 7(4), 357–374 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 22.Colombo, G., Palladino, M.: The minimum time function for the controlled moreau’s sweeping process. SIAM J. Control Optim. 54(4), 2036–2062 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 23.Cornet, B.: Existence of slow solutions for a class of differential inclusions. J. Math. Anal. Appl. 96(1), 130–147 (1983)MathSciNetCrossRefMATHGoogle Scholar
- 24.Edmond, J.F., Thibault, L.: BV solutions of nonconvex sweeping process differential inclusion with perturbation. J. Diff. Equat. 226, 135–179 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 25.Frankowska, H., Plaskacz, S.: A measurable upper semicontinuous viability theorem for tubes. Nonlinear Anal. Theory Meth. Appl. 26(3), 565–582 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 26.García-Falset, J., Muñíz Pérez, O.: Projected dynamical systems on Hilbert space. J. Nonlinear Convex Anal. 15(2), 325–344 (2005)MathSciNetMATHGoogle Scholar
- 27.Gudovich, A., Quincampoix, M.: Optimal control with hysteresis nonlinearity and multidimensional play operator. SIAM J. Control Optim. 49(2), 788–807 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 28.Haddad, T., Jourani, A., Thibault, L.: Reduction of sweeping process to unconstrained differential inclusion. Pac. J. Optim. 4, 493–512 (2008)MathSciNetMATHGoogle Scholar
- 29.Hantoute, A., Mazade, M.: Lyapunov functions for evolution variational inequalities with uniformly prox-regular sets. Positivity 21(1), 423–448 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 30.Henry, C.: Differential equations with discontinuous right-hand side for planning procedures. J. Econom. Theory 4(3), 545–551 (1972)MathSciNetCrossRefGoogle Scholar
- 31.Henry, C.: An existence theorem for a class of differential equations with multivalued right-hand side. J. Math. Anal. Appl. 41(1), 179–186 (1973)MathSciNetCrossRefMATHGoogle Scholar
- 32.Hu, S., Papageorgiou, N.: Handbook of Multivalued Analysis. Vol. I, Mathematics and Applications, vol. 419. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
- 33.Jourani, A., Vilches, E.: Galerkin-like method for generalized perturbed sweeping process with nonregular sets. SIAM J. Control Optim. 55(4), 2412–2436 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 34.Jourani, A., Vilches, E.: Positively α-far sets and existence results for generalized perturbed sweeping processes. J. Convex Anal. 23(3), 775–821 (2016)MathSciNetMATHGoogle Scholar
- 35.Jourani, A., Vilches, E.: Moreau-Yosida regularization of state-dependent sweeping processes with nonregular sets. J. Optim. Theory Appl. 173(1), 91–116 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 36.Le, B.K.: On properties of differential inclusions with prox-regular sets. Pac. J. Optim. 13(1), 17–27 (2017)MathSciNetGoogle Scholar
- 37.Maury, B., Venel, J.: Un modèle de mouvement de foule. ESAIM Proc. 18, 143–152 (2007)CrossRefMATHGoogle Scholar
- 38.Mazade, M., Thibault, L.: Differential variational inequalities with locally prox-regular sets. J. Convex Anal. 19(4), 1109–1139 (2012)MathSciNetMATHGoogle Scholar
- 39.Mazade, M., Thibault, L.: Regularization of differential variational inequalities with locally prox-regular sets. Math. Program. 139(1), 243–269 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 40.Moreau, J.J.: Rafle par un convexe variable I, expo. 15. Sém, Anal. Conv. Mont., pp. 1–43 (1971)Google Scholar
- 41.Moreau, J.J.: Rafle par un convexe variable II, expo. 3. Sém, Anal. Conv. Mont., pp. 1–36 (1972)Google Scholar
- 42.Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Equat. 26(3), 347–374 (1977)MathSciNetCrossRefMATHGoogle Scholar
- 43.Noel, J.: Inclusions différentielles d’évolution associées à des ensembles sous lisses. Ph.D. thesis, Université Montpellier II (2013)Google Scholar
- 44.Noel, J., Thibault, L.: Nonconvex sweeping process with a moving set depending on the state. Vietnam J. Math. 42(4), 595–612 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 45.Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Amer. Math. Soc. 352(11), 5231–5249 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 46.Recupero, V.: The play operator on the rectifiable curves in a Hilbert space. Math. Methods Appl. Sci. 31(11), 1283–1295 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 47.Sene, M., Thibault, L.: Regularization of dynamical systems associated with prox-regular moving sets. J. Nonlinear Convex Anal. 15(4), 647–663 (2014)MathSciNetMATHGoogle Scholar
- 48.Serea, O.: On reflecting boundary problem for optimal control. SIAM J. Control Optim. 42(2), 559–575 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 49.Thibault, L.: Sweeping process with regular and nonregular sets. J. Diff. Equat. 193(1), 1–26 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 50.Thibault, L., Zakaryan, T.: Convergence of subdifferentials and normal cones in locally uniformly convex Banach space. Nonlinear Anal. 98, 110–134 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 51.Venel, J.: A numerical scheme for a class of sweeping processes. Numer. Math. 118(2), 367–400 (2011)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer Science+Business Media B.V., part of Springer Nature 2018