Skip to main content
Log in

Computation of the Epsilon-Subdifferential of Convex Piecewise Linear-Quadratic Functions in Optimal Worst-Case Time

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

The epsilon-subdifferential of convex univariate piecewise linear-quadratic (PLQ) functions can be computed in linear worst-case time complexity as the level-set of a convex function. Using binary search, we improve the complexity to logarithmic worst-case time, and prove such complexity is optimal. In addition, a new algorithm to compute the entire graph of the epsilon-subdifferential in (optimal) linear time is presented. Both algorithms are not limited to convex PLQ functions but are also applicable to any convex piecewise-defined functions with little restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajaj, A., Hare, W., Lucet, Y.: Visualization of the đťś–-subdifferential of piecewise linear-quadratic functions, Comput. Optim. Appl. Accepted for publication (2016)

  2. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 2nd edn. Springer, Cham (2017). With a foreword by Hédy Attouch

    Google Scholar 

  3. Bauschke, H.H., Goebel, R., Lucet, Y., Wang, X.: The proximal average: Basic theory. SIAM J. Optim. 19, 768–785 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Moffat, S.M., Wang, X.: Self-dual smooth approximations of convex functions via the proximal average. In: Bauschke, H. H., Burachik, R. S., Combettes, P. L., Elser, V., Luke, D. R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, vol. 49 of Springer Optimization and Its Applications, pp. 23–32. Springer, New York (2011)

  5. Bauschke, H.H., Mohrenschildt, M.v.: Symbolic computation of Fenchel conjugates. ACM Commun. Comput. Algebra 40, 18–28 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borwein, J.M., Hamilton, C.H.: Symbolic computation of multidimensional Fenchel conjugates. In: ISSAC 2006, pp. 23–30. ACM, New York (2006)

  7. Borwein, J.M.: Symbolic Fenchel conjugation. Math. Program. 116, 17–35 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brøndsted, A., Rockafellar, R.T.: On the subdifferentiability of convex functions. Proc. Amer. Math. Soc. 16, 605–611 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Contento, L., Ern, A., Vermiglio, R.: A linear-time approximate convex envelope algorithm using the double Legendre-Fenchel transform with application to phase separation. Comput. Optim. Appl. 60, 231–261 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gardiner, B., Lucet, Y.: Graph-matrix calculus for computational convex analysis. In: Bauschke, H. H., Burachik, R. S., Combettes, P. L., Elser, V., Luke, D. R., Wolkowicz, H. (eds.) Fixed-point Algorithms for Inverse Problems in Science and Engineering, vol. 49 of Springer Optimization and Its Applications, pp. 243–259. Springer, New York (2011)

  11. Goebel, R.: The proximal average for saddle functions and its symmetry properties with respect to partial and saddle conjugacy. J. Nonlinear Convex Anal. 11, 1–11 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Goebel, R., Hare, W., Wang, X.: The optimal value and optimal solutions of the proximal average of convex functions. Nonlinear Anal. Theory Methods Appl. 75, 1290–1304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hare, W.: A proximal average for nonconvex functions: A proximal stability perspective. SIAM J. Optim. 20, 650–666 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hiriart-Urruty, J.-B.: From convex optimization to nonconvex optimization. Necessary and sufficient conditions for global optimality. In: Nonsmooth Optimization and Related Topics (Erice, 1988), vol. 43 of Ettore Majorana Internat. Sci. Ser. Phys. Sci., pp. 219–239. Plenum, New York (1989)

  15. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I, vol. 305 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1993). Vol I: Fundamentals

    Google Scholar 

  16. Hiriart-Urruty, J.-B.: Convex Analysis and Minimization Algorithms II, vol. 306 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1993). Vol II: Advanced theory and bundle methods

    Google Scholar 

  17. Hiriart-Urruty, J.-B., Lucet, Y.: Parametric computation of the Legendre–Fenchel conjugate. J. Convex Anal. 14, 657–666 (2007)

    MathSciNet  Google Scholar 

  18. Ioffe, A.D.: Approximate subdifferentials and applications. I. The finite-dimensional theory. Trans. Amer. Math Soc. 281, 389–416 (1984)

    MathSciNet  MATH  Google Scholar 

  19. Johnstone, J., Koch, V., Lucet, Y.: Convexity of the proximal average. J. Optim. Theory Appl. 148, 107–124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lucet, Y.: A fast computational algorithm for the Legendre–Fenchel transform. Comput. Optim. Appl. 6, 27–57 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lucet, Y.: Computational Convex Analysis library, 1996-2013

  22. Lucet, Y.: Faster than the fast legendre transform, the linear-time legendre transform. Numer. Algorithms 16, 171–185 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lucet, Y.: Fast Moreau envelope computation I: Numerical algorithms. Numer. Algorithms 43, 235–249 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lucet, Y.: What shape is your conjugate? A survey of computational convex analysis and its applications. SIAM Rev. 52, 505–542 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lucet, Y.: Techniques and open questions in computational convex analysis. In: Computational and Analytical Mathematics, vol. 50 of Springer Proc. Math. Stat., pp. 485–500. Springer, New York (2013)

  26. Lucet, Y., Bauschke, H.H., Trienis, M.: The piecewise linear-quadratic model for computational convex analysis. Comput. Optim. Appl. 43, 95–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer-Verlag, Berlin (1998)

    Book  MATH  Google Scholar 

  28. Trienis, M.: Computational convex analysis: From continuous deformation to finite convex integration, Master’s thesis, University of British Columbia (2007)

  29. Tseng, P., Luo, Z.-Q.: On computing the nested sums and infimal convolutions of convex piecewise-linear functions. J. Algorithms 21, 240–266 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Discovery Grant #298145-2013 (Lucet) from the Natural Sciences and Engineering Research Council of Canada (NSERC). Part of the research was performed in the Computer-Aided Convex Analysis (CA2) laboratory funded by a Leaders Opportunity Fund (LOF, John R. Evans Leaders Fund – Funding for research infrastructure) from the Canada Foundation for Innovation (CFI) and by a British Columbia Knowledge Development Fund (BCKDF).

This work was started at the end of Anuj Bajaj MSc research under the guidance of Dr. Warren Hare. Their preliminary efforts, ideas, and interest motivated the authors to pursue more efficient algorithms. The authors thank them for their initial contribution without which this work would not have been possible.

The authors are very grateful for several suggestions by the reviewers, which greatly improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Lucet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Lucet, Y. Computation of the Epsilon-Subdifferential of Convex Piecewise Linear-Quadratic Functions in Optimal Worst-Case Time. Set-Valued Var. Anal 27, 623–641 (2019). https://doi.org/10.1007/s11228-018-0476-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-018-0476-5

Keywords

Mathematics Subject Classification (2010)

Navigation