Skip to main content

Advertisement

Log in

The Mayer and Minimum Time Problems with Stratified State Constraints

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

This paper studies optimal control problems with state constraints by imposing structural assumptions on the constraint domain coupled with a tangential restriction with the dynamics. These assumptions replace pointing or controllability assumptions that are common in the literature, and provide a framework under which feasible boundary trajectories can be analyzed directly. The value functions associated with the state constrained Mayer and minimal time problems are characterized as solutions to a pair of Hamilton-Jacobi inequalities with appropriate boundary conditions. The novel feature of these inequalities lies in the choice of the Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altarovici, A., Bokanowski, O., Zidani, H.: A general Hamilton-Jacobi framework for nonlinear state-constrained control problems. ESAIM Control, Optim. Calc. Var. 19(2), 337–357 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arutyunov, A.V., Tynyanskiy, N.T.: The maximum principle in a problem with phase constraints. Sov. J. Comput. Syst. Sci. 23, 28–35 (1985). Translated into English Original Russian text was published in 1984

    MathSciNet  Google Scholar 

  3. Arutyunov, A.V.: On necessary conditions for optimality in a problem with state constraints. Dokl. Akad. Nauk SSSR 280(5), 1033–1037 (1985)

    MathSciNet  Google Scholar 

  4. Arutyunov, A.V.: On the theory of the maximum principle in optimal control problems with phase constraints. Sov. Math. Dokl. 39(1), 1–4 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Aubin, J.P., Cellina, A.: Differential inclusions: set-valued maps and viability theory. Volume 264 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York (1984)

    Book  Google Scholar 

  6. Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA (1997). With appendices by M. Falcone and P. Soravia

    Book  MATH  Google Scholar 

  7. Barnard, R.C., Wolenski, P.R.: Flow invariance on stratified domains. Set-Valued Var. Anal. 21, 377–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barron, E.N., Jensen, R.: Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Comm. Partial Differ. Equat. 15(12), 1713–1742 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Bettiol, P., Frankowska, H., Vinter, R.B.: \(l^{\infty }\) estimates on trajectories confined to a closed subset. J. Differ. Equat. 252(2), 1912–1933 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blanc, A.: Deterministic exit time problems with discontinuous exit cost. SIAM J. Control Optim. 35, 399–434 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bokanowski, O., Forcadel, N., Zidani, H.: Deterministic state-constrained optimal control problems without controllability assumptions. ESAIM Control, Optim. Calc. Var. 17(4), 995–1015 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clarke, F.: Functional analysis, calculus of variations and optimal control. Volume 264 of Graduate Text in Mathematics. Springer (2013)

  13. Clarke, F., Ledyaev, Y., Stern, R., Wolenski, P.: Nonsmooth Analysis and Control Theory. Volume 178 of Graduate Text in Mathematics. Springer (1998)

  14. Crandall, M., Evans, L., Lions, P.-L.: Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282, 487–502 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dubovitskii, A.Y., Dubovitskii, V.A.: Necessary conditions for strong minimum in optimal control problems with degeneration of endpoint and phase constraints. Usp. Mat. Nauk. 40(2), 175–176 (1985)

    MathSciNet  Google Scholar 

  16. Forcadel, N., Rao, Z., Zidani, H.: State-constrained optimal control problems of impulsive differential equations. Appl. Math. Optim. 68, 1–19 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frankowska, H.: Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31(1), 257–272 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frankowska, H., Plaskacz, S.: Semicontinuous solutions of Hamilton-Jacobi-Bellman equations with degenerate state constraints. J. Math. Anal Appl. 251(2), 818–838 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frankowska, H., Vinter, R.B.: Existence of neighboring feasible trajectories Applications to dynamics programming for state-constrained optimal control problems. J. Optim. Theory Appl. 104(1), 20–40 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hermosilla, C., Zidani, H.: Infinite horizon problems on stratifiable state constraints sets. J. Differ. Equat. 258(4), 1430–1460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ishii, H., Koike, S.: A new formulation of state constraint problems for first-order pdes. SIAM J. Control Optim. 34(2), 554–571 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Komarov, V.A.: The equation of dynamic programming for a time-optimal problem with phase constraints. Math. USSR Sbornik 63(1), 47–58 (1989). Translated into English. Original Russian text was published in 1988

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee, J.: Introduction to smooth manifolds. Volume 218 of Graduate Text in Mathematics. Springer (2013)

  24. Motta, M.: On nonlinear optimal control problems with state constraints. SIAM J. Control Optim. 33, 1411–1424 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Motta, M., Rampazzo, F.: Multivalued dynamics on a closed domain with absorbing boundary. applications to optimal control problems with integral constraints. Nonlinear Anal. 41, 631–647 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Soner, H.: Optimal control with state-space constraint I. SIAM J. Control Optim. 24(3), 552–561 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Soner, H.: Optimal control with state-space constraint II. SIAM J. Control Optim. 24(6), 1110–1122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Smirnov, G.: Introduction to the theory of differential inclusions. Volume 41 of Graduate Studies in Mathematics. AMS (2002)

  29. Wolenski, P., Zhuang, Y.: Proximal analysis and the minimal time function. SIAM J. Control Optim. 36(3), 1048–1072 (1998). electronic

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the anonymous referees for their useful comments and suggestions. This work was partially supported by iCODE institue, the European Union under the 7th Framework Programme FP7-PEOPLE-2010-ITN Grant agreement number 264735-SADCO and by the ANR project HJNet ANR-12-BS01-0008-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zidani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermosilla, C., Wolenski, P.R. & Zidani, H. The Mayer and Minimum Time Problems with Stratified State Constraints. Set-Valued Var. Anal 26, 643–662 (2018). https://doi.org/10.1007/s11228-017-0413-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-017-0413-z

Keywords

Mathematics Subject Classification (2010)

Navigation