Analytical models for availability evaluation of edge and fog computing nodes

Abstract

Although cloud computing environments increase availability, reliability, and performance, many emerging technologies demand latency-aware networks for real-time data processing. For instance, the Internet of Things environments are composed of many connected devices that generate data for applications, where many of them are latency-sensitive, such as facial recognition security systems in airports or train stations. To overcome the latency of the cloud infrastructure, researchers introduced the edge and fog computing paradigms in order to increase computing power between the cloud and devices. In this study, we propose analytical availability models; also, we evaluate the availability of physical edge and fog nodes running applications. To finish, we perform a capacity-oriented availability and a cost evaluation comparing edge and fog environments. Some of the results show that we can improve the availability from 2.96 number of nines to 5.93, by using our analytical models to plan the infrastructure. These models aim at supporting engineers and analysts to plan fault-tolerant edge and fog environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. 1.

    https://www.raspberrypi.org/

  2. 2.

    https://www.dji.com/br/mavic

  3. 3.

    https://www.nginx.com/

  4. 4.

    https://keras.io/

  5. 5.

    http://www.modcs.org/

  6. 6.

    http://dell-ui-eipt.azurewebsites.net/

  7. 7.

    https://www.pidramble.com/wiki/benchmarks/power-consumption

  8. 8.

    https://www.electricchoice.com/electricity-prices-by-state/

  9. 9.

    https://www.internationalairportreview.com

References

  1. 1.

    Agarwal PK, Naughton T, Park BH, Bernholdt DE, Hursey JJ, Geist A (2020) Application health monitoring for extreme-scale resiliency using cooperative fault management. Concurr Comput Pract Exp 32(2):e5449

    Article  Google Scholar 

  2. 2.

    Araujo E, Dantas J, Matos R, Pereira P, Maciel P (2019) Dependability evaluation of an iot system: a hierarchical modelling approach. In: 2019 IEEE international conference on systems, man and cybernetics (SMC). IEEE, pp 2121–2126

  3. 3.

    Battula SK, O’Reilly MM, Garg S, Montgomery J (2020) A generic stochastic model for resource availability in fog computing environments. IEEE Trans Parallel Distrib Syst 32(4):960–974

    Article  Google Scholar 

  4. 4.

    Bilal K, Khalid O, Erbad A, Khan SU (2018) Potentials, trends, and prospects in edge technologies: fog, cloudlet, mobile edge, and micro data centers. Comput Netw 130:94–120

    Article  Google Scholar 

  5. 5.

    Bittencourt LF, Lopes MM, Petri I, Rana OF (2015) Towards virtual machine migration in fog computing. In: 2015 10th international conference on P2P, parallel, grid, cloud and internet computing (3PGCIC). IEEE, pp 1–8

  6. 6.

    Brilhante J, Silva B, Maciel P, Zimmermann A (2014) Eucabomber 2.0: a tool for dependability tests in eucalyptus cloud infrastructures considering vm life-cycle. In: 2014 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 2669–2674

  7. 7.

    Caliri GV (2000) Introduction to analytical modeling. In: International CMG conference, pp 31–36

  8. 8.

    Cao Q, Shen L, Xie W, Parkhi OM, Zisserman A (2018) Vggface2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE international conference on automatic face and gesture recognition (FG 2018). IEEE, pp 67–74

  9. 9.

    Chen N, Chen Y, You Y, Ling H, Liang P, Zimmermann R (2016) Dynamic urban surveillance video stream processing using fog computing. In: 2016 IEEE second international conference on multimedia big data (BigMM). IEEE, pp 105–112

  10. 10.

    Dantas J, Matos R, Araujo J, Oliveira D, Oliveira A, Maciel P (2016) Hierarchical model and sensitivity analysis for a cloud-based vod streaming service. In: 2016 46th annual IEEE/IFIP international conference on dependable systems and networks workshop (DSN-W). IEEE, pp 10–16

  11. 11.

    Dastjerdi AV, Buyya R (2016) Fog computing: helping the internet of things realize its potential. Computer 49(8):112–116

    Article  Google Scholar 

  12. 12.

    Devore JL (2008) Probability and statistics for engineering and the sciences

  13. 13.

    Ever E (2019) Performability analysis methods for clustered wsns as enabling technology for iot. In: Performability in Internet of Things. Springer, pp 1–19

  14. 14.

    Farhadi M, Lanet JL, Pierre G, Miorandi D (2020) A systematic approach towards security in fog computing: assets, vulnerabilities, possible countermeasures. Softw Pract Exp 50(6):973–997

    Article  Google Scholar 

  15. 15.

    Fernandes S, Tavares E, Santos M, Lira V, Maciel P (2012) Dependability assessment of virtualized networks. In: 2012 IEEE international conference on communications (ICC), pp 2711–2716

  16. 16.

    Gorbenko A, Romanovsky A, Tarasyuk O (2019) Fault tolerant internet computing: benchmarking and modelling trade-offs between availability, latency and consistency. J Netw Comput Appl 146:102412

    Article  Google Scholar 

  17. 17.

    Kashani MH, Rahmani AM, Navimipour NJ (2020) Quality of service-aware approaches in fog computing. Int J Commun Syst 33:e4340

    Article  Google Scholar 

  18. 18.

    Haneefa NK, Pramod S, Pal S, Manivasakan R (2020) A Markov chain based framework for analysis of hierarchical fog computing networks. In: Information science and applications. Springer, pp 41–52

  19. 19.

    Iorga M, Feldman L, Barton R, Martin MJ, Goren NS, Mahmoudi C (2018) Fog computing conceptual model. Technical report

  20. 20.

    Jain R (1990) The art of computer systems performance analysis: techniques for experimental design, measurement, simulation, and modeling. Wiley, New York

    Google Scholar 

  21. 21.

    Jammal M, Hawilo H, Kanso A, Shami A (2018) Ace: availability-aware cloudsim extension. IEEE Trans Netw Serv Manag 15(4):1586–1599

    Article  Google Scholar 

  22. 22.

    Khan LU, Yaqoob I, Tran NH, Kazmi SA, Dang TN, Hong CS (2020) Edge computing enabled smart cities: a comprehensive survey. IEEE Internet Things J 7:10200–10232

    Article  Google Scholar 

  23. 23.

    Leclerc B, Cale J (2020) Big data. Routledge, London

    Google Scholar 

  24. 24.

    Maciel P, Trivedi K, Matias R, Kim D (2011) Dependability modeling. In: Performance and dependability in service computing: concepts, techniques and research directions

  25. 25.

    Maciel PR, Trivedi KS, Matias R, Kim DS (2012) Dependability modeling. In: Performance and dependability in service computing: concepts, techniques and research directions. IGI Global, pp 53–97

  26. 26.

    Mariappan M, Thong LK, Muthukaruppan K (2020) A design methodology of an embedded motion-detecting video surveillance system. Int J Integr Eng 12(2):55–69

    Google Scholar 

  27. 27.

    Matos R, Dantas J, Araujo J, Trivedi KS, Maciel P (2017) Redundant eucalyptus private clouds: availability modeling and sensitivity analysis. J. Grid Comput. 15(1):1–22. https://doi.org/10.1007/s10723-016-9381-z

    Article  Google Scholar 

  28. 28.

    Melo C, Matos R, Dantas J, Maciel P (2017) Capacity-oriented availability model for resources estimation on private cloud infrastructure. In: 2017 IEEE 22nd Pacific rim international symposium on dependable computing (PRDC). IEEE, pp 255–260

  29. 29.

    Melo R, Vicente de Paulo F, de Melo Filho IJ, Feliciano F, Maciel PRM (2018) Redundancy mechanisms applied in cloud computing infrastructures. In: 2018 13th Iberian conference on information systems and technologies (CISTI). IEEE, pp 1–6

  30. 30.

    Munir A, Kansakar P, Khan SU (2017) Ifciot: integrated fog cloud iot: a novel architectural paradigm for the future internet of things. IEEE Consum Electron Mag 6(3):74–82

    Article  Google Scholar 

  31. 31.

    Nguyen TA, Min D, Choi E (2020) A hierarchical modeling and analysis framework for availability and security quantification of iot infrastructures. Electronics 9(1):155

    Article  Google Scholar 

  32. 32.

    Öhmann D, Simsek M, Fettweis GP (2014) Achieving high availability in wireless networks by an optimal number of Rayleigh-fading links. In: 2014 IEEE Globecom workshops (GC Wkshps). IEEE, pp 1402–1407

  33. 33.

    Pereira P, Araujo J, Maciel P (2019) A hybrid mechanism of horizontal auto-scaling based on thresholds and time series. In: 2019 IEEE international conference on systems, man and cybernetics (SMC). IEEE, pp 2065–2070

  34. 34.

    Pereira P, Araujo J, Matos R, Preguiça N, Maciel P (2018) Software rejuvenation in computer systems: an automatic forecasting approach based on time series. In: 2018 IEEE 37th international performance computing and communications conference (IPCCC). IEEE, pp 1–8

  35. 35.

    Pereira P, Araujo J, Torquato M, Dantas J, Melo C, Maciel P (2020) Stochastic performance model for web server capacity planning in fog computing. J Supercomput 76(12):9533–9557

    Article  Google Scholar 

  36. 36.

    Petrescu RV (2019) Face recognition as a biometric application. J Mechatron Robot 3:237–257

    Article  Google Scholar 

  37. 37.

    Silva B, Matos R, Callou G, Figueiredo J, Oliveira D, Ferreira J, Dantas J, Lobo A, Alves V, Maciel P (2015) Mercury: an integrated environment for performance and dependability evaluation of general systems. In: Proceedings of industrial track at 45th dependable systems and networks conference, DSN

  38. 38.

    da Silva Lisboa MFF, Santos GL, Lynn T, Sadok D, Kelner J, Endo PT et al. (2018) Modeling the availability of an e-health system integrated with edge, fog and cloud infrastructures. In: 2018 IEEE symposium on computers and communications (ISCC). IEEE, pp 00416–00421

  39. 39.

    Sivasubramaniam A, Ramachandran U, Venkateswaran H (1994) A comparative evaluation of techniques for studying parallel system performance. Georgia Institute of Technology, pp 1–24

  40. 40.

    Sousa E, Lins F, Tavares E, Cunha P, Maciel P (2015) A modeling approach for cloud infrastructure planning considering dependability and cost requirements. IEEE Trans Syst Man Cybern Syst 45(4):549–558

    Article  Google Scholar 

  41. 41.

    Souza D, Matos R, Araujo J, Alves V, Maciel P (2013) Eucabomber: experimental evaluation of availability in eucalyptus private clouds. In: 2013 IEEE international conference on systems, man, and cybernetics. IEEE, pp 4080–4085

  42. 42.

    Sunyaev A (2020) Fog and edge computing. In: Internet computing. Springer, pp 237–264

  43. 43.

    Tadakamalla U, Menascé D (2018) Fogqn: an analytic model for fog/cloud computing. In: 2018 IEEE/ACM international conference on utility and cloud computing companion (UCC Companion). IEEE, pp 307–313

  44. 44.

    Torquato M, Umesh I, Maciel P (2018) Models for availability and power consumption evaluation of a private cloud with VMM rejuvenation enabled by VM live migration. J Supercomput 74(9):4817–4841

    Article  Google Scholar 

  45. 45.

    Trivedi KS, Hunter S, Garg S, Fricks R (1996) Reliability analysis techniques explored through a communication network example. Technical report, North Carolina State University. Center for Advanced Computing and Communication

  46. 46.

    Verma M, Yadav NBAK (2015) An architecture for load balancing techniques for fog computing environment. Int J Comput Sci Commun 8(2):43–49

    Google Scholar 

  47. 47.

    Wang Q, Luo HW, Xiong J (2020) An improved foraging heuristic considering reduced fog latency. International Journal of Communication Systems p. e4316

  48. 48.

    Ye M, Shen J, Lin G, Xiang T, Shao L, Hoi SC (2020) Deep learning for person re-identification: a survey and outlook. arXiv preprint arXiv:2001.04193

Download references

Acknowledgements

We would like to thank the Coordination of Improvement in Higher Education Personnel—CAPES, National Council for Scientific and Technological Development—CNPq, Fundação de Amparo à Ciência e Tecnologia de Pernambuco—FACEPE, MoDCS and UNAME Research Groups for their support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo Pereira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pereira, P., Araujo, J., Melo, C. et al. Analytical models for availability evaluation of edge and fog computing nodes. J Supercomput (2021). https://doi.org/10.1007/s11227-021-03672-0

Download citation

Keywords

  • Fog computing
  • Edge computing
  • Availability evaluation
  • Markov chain
  • Analytical models
  • Capacity-oriented availability